174 Inside the TRS-80 Madel 100

Table 9.2. Divisors for even-tempered tones

Note FrequencyDivisor
D# 156 15798

E 165 14911
F 175 14074
F# 185 13285
G 196 12539
G# 208 11835
A 220 11171

A# 233 10544 ;
B 247 9952 _ o
c 262 9304

C# 277 8866

D 204 | 8369 ' '

D | 204 | g3 The Printer Interface

E 330 7456

F 349 7037

Fi# 370 6642

G 302 6269

G# 415 5918

A 440 5585

A# 466 5272

B 494 4976

C 523 4697

C# 554 4433

D 587 4184 The Model 100 communicates with a printer according to the
g# ggg gggg Centronics interface standard, which defines mechanical, electrical,
. cos 3519 and software characteristics of the interface.

F# 740 3321 . .

A 784 | 3135 : Mechanical Requirements

G# 831 2959 . .

A 880 2793 : The first requirement of the Centronics standard is the connector,
g# ggg gigg : a 36-pin device usually made by AMP or Amphenol. At the rear of the
o “oa7 | 2348 Model 100 is a 26-pin connector labeled “PRINTER”, with the hard-
o 1100 | 2217 ware designation CN35. This connector, with square pins spaced 1/10
D 1175 | 2092 : inch apart, was probably chosen to save precious space on the Model
2#]g?g 1222 100 case. The printer cable 26-1409, the connections of which are
c 1397 | 1759 shown in table 10.1, plugs into CN35 and has a connector at the other
Eu 1480 | 1661 : end that conforms to the Centronics standard.

G 1568 1567

G# 1661 1479

A 1760 1396

A 1865 1318

B 1876 1244

175

176 Inside the TRS-80 Model 100

The Printer Interface 177

Table 10.1. Printer connections Electrical Requirements

Centronics | CNS According to the Centronics standard, the thirty-six pins at the
pin pin Function Source
Centronics connector fall into two groups: the ground pins (pins 19
1 1 STROBE-not computer " and up)and the active pins (pins 1 to 18). Ground pins are connected to
2 3 DATAD computer a source of zero voltage in both the printer and computer. Active pins
8 S DATAT computer carry variable voltages, normally within the range of 0 (LOW or logic
4 7 DATAZ computer 0 5 volts (HIGH or logic 1). M fih . .
5 9 DATAS computer Jio 5 volts(oriogicl). Mosto .e active p_ms are contrglled by
6 11 DATA4 computer el the computer and are used as a source of information for the printer, A
7 13 DATAS computer : few are controlled by the printer and are used as an information source
8 15 DATAS computer ' by the computer.
o 7 DATA7 computer _ The Model 100 provides ground to most of the ground pins, and
10 19 ignored by Model 100 . . . T o
) makes most of the active pins accessible to the CPU. Pins 10, 12, 14
11 21 BUSY | printer b h 18 431 th h 36 d here |
12 53 ignored by Model 100 tnroug , an throug a.re not connected anywhere in the
13 25 BUSY-NOT printer ; Model 100. For example, many printers announce that they have run
14 — NC ' out of paper by producing a high signal at pin 12. The printer cable
15 — NC : provides this signal to the Model 100 at pin 23, but this signal goes
16 - NG : nowhere within the Model 100.
17 — NC .
18 - NG Software Characteristics
19 2 GND ;
20 4 GND The Centronics standard also spells out the sequence in which the
21 6 GND . , Lo : —
2 5 GND printer should energize the various lines to accomplish the printing of a
o3 10 GND character. Briefly stated, the computer determines whether the printer
04 12 GND : is able to accept another character by inspecting the BUSY and
25 14 GND BUSY-NOT lines. The computer makes an eight-bit word available to
26 16 GND _ the printer on the DATA lines, of which there are eight. It then signals
27 18 GND g the printer to read the data word by lowering the STROBE line; and
28 20 GND - : :
29 2 GND leaving the data word in place long enough for the printer to read the
30 24 GND | data.
31 26 ignored by Model 100
32 — NC
33 s NC
34 — NC
35 — NC
36 — NC

178 inside the TRS-80 Model 100

The pattern of 1’s and 0"s which the computer places on the eight
data lines is determined largely by the ASCII character set (values 32to
126 decimal). This is in contrast to the EBCDIC used by IBM and the
Baudot code used by many telex machines. Fortunately, almost a}}
character manipulations within the Model 100 use the ASCII set. This
allows most texts to be loaded from memory to the printer without the
need for translation. Most printers, however, do not respond to values
between 128 and 255, let alone reproduce the novel displays the Model
100 screen gives for that range of values.

Model 100 Printer Hardware.

Table 10.2 summarizes the ports through which the CPU accesses
the various printer signals. The two printer status lines, BUSY and
BUSY-NOT, are made available to the CPU through bits I and 2 of
input port BB (or B3: decimal values 179 or 187). This port is imple-
mented in hardware through port C of the P1O chip. The two- lines
discussed here are often referred to as PC1I and PC2. Pull-up resistors
are provided, so that without a printer cable attached both appear to

the CPU as logic "1".

Table 10.2. CPU access to printer signals.

CcPU cpPU
source destination
{output Printer {input
port} signal port)
ES8 bit 1 STROBE
DATAD
B2 through
DATAY
BUSY BB bit 2
BUSY-NOT BB bit 1

The CPU sets the eight-bit data word through output port B9 (or
B1: decimal values 177 or 185), implemented in hardware as port A of
the PIO and often abbreviated as PAO through PA7. Buffer M32
provides enough power to drive a two-meter cable.

The Printer Interface 179

The STROBE-NOT signal, usually at a logic 1 level, must be
pulled down for a brief interval. This is done through bit 1 of output
port E8 (actually E0 through EF, decimal 224 through 239). Port E8 is
selected through port address decode line Y6-NOT and is latched in
flip-flop M14. Transistor T8 is the signal driver,

These connections are shown schematically in figure 10.1.

When the printer detects the low condition of the STROBE-NOT
signal, it goes to the data lines to see what character is to be printed.
Obviously, the computer must leave the data lines unchanged until the
printer has done this. Some computers have a par allel buffer dedicated
to the printer, so that the problem never arises. In the Model 100,
however, output port B9 is used for many other functions, so it is
important that none of the other functions take place until the printer
has had time to read the data. The designers of the Model 100 could
have relied on the ACK-NOT line at Centronics pin 19, to see when the
printer has read the data, but not all printers provide the ACK-NOT
signal.

Although it might appear sensible to suspend operations until the
BUSY and BUSY-NOT lines indicate that the printer has finished
printing the character, with a typical 80 character-per-second printer,
this would mean waiting 12 milliseconds, which is an eternity to
assembly programmers. As we shall see, the ROM resolves the prob-
Iem by going into a 200-microsecond delay loop (during which time
most interrupts are masked) after the strobe is sent. This is based on the

assumption that all printers are quick enough to read the data within
that time,

How the ROM Prints Characters

The printer driver routine is located at 6D3F through 6D6C. To
understand the routine you should disassemble that code,

Since the B and C registers are used, the routine saves those
registers on the stack using a PUSH instruction at 6D3F The character

to be printed, which was in A when the routine was called, is loaded to
C.

180 Inside the TRS-80 Model 100

]

TROBE
N

The Printer Interface 181

=F

@
S
Lo
Hw
zz
=z
=)
[y s]
a o a w Q
o 6 - O m 0 m 5 ¥ -3
z zZ o x b ¥ O Z
o 5 85 2 5 4 & & 6ba v s v
-
wl ~] 2] of o =} wf 2 T} B ©
- o « o
2 S I T I S

M3z
40H244

17

PAD
PA1

nl :l N‘ 'l °‘
& " o @ @

P a g g
& a o o a

LPA?«J-

RS6
0K J
T8

25C2803

fie

.
L]

[l

~

-

=5 « -

= 5 318

] ol «
i »
L w e sl“"-sg
TTRAF -

JREB
FR-E1 8]

R64
IIKJ

PCI

pPC2
Printer hardware configuration

Figure 10.1.

The CPU examines BUSY and BUSY-NOT repeatedly until the
printer is ready, each time also calling subroutine 729F, which checks
to see if the Break key has been pressed. If it has, the routine returns
with the carry flag set. The loop is at 6D41 through 6D4D,

You want to avoid having to reset the computer if the routine is
executed when no printer is attached. Model T owners will recall
problems along this line.

When the printer is ready, the byte to be sent to the printer is
loaded to the printer connector by means of output port BS. Then the
printer strobe line is pulled low by turning on bit | of output port E8.

Using a single bit of output port E8 can be tricky, since it controls
many other functions, such as selection of the option ROM, control of
the cassette motor, and strobing of the clock/calendar chip. The
Model 100 leaves a copy of the contents of output port E8 at FF45. Bit

1 1s turned on and then off again, without changing the other bits as
follows:

6D56 3A 45 FF LDA FF45 ;LD A {FF45)
6D59 47 MOV BA LD BA
6D5A F& 02 ORI 02 ;OR 02
6D5C D3 E8 OoUT E8 ;OUT (E8)A
B8D5E 78 MGV AB LD AB
6D5F D3 ES ouT EB ;OUT (EB),A

The port contents are placed in B and the accumulator, and bit 1 is
turned on in the accumulator. The accumulator is sent to the port,
restored to its previous value from B, and again sent to the port.

Using this ROM code, how long does the strobe last? The changes
in output value of port E8 occur near the end of execution of each of
the OUT instructions. They are separated by a MOV (LD) instruction
that moves data from one register to another. The total time interval is
fourteen cycles— the length of one OUT (ten cyeles) and one LD B,A
(4 cycles).

The Model 100 CPU crystal (hardware designation X2) oscillates
at 4.9152 megahertz. The CPU divides this by iwe resulting in a clock
period of about 0.4 microseconds. An interval of fourteen cycles lasts
about 5.7 microseconds.

182 inside the TRS-80 Model 100

Typical printers (Epson MX-80, Okidata 92) require that the
strobe last at least 0.5 microseconds, so this is more than adequate.

The code that follows, at locates 6D61-6D6C, leaves the parallel
data in place during a 200 microsecond delay. It unmasks the clock
interrupt, restores the previous values in A, B, and C, and returns
control to the calling routine.

Fancier print routines.

The printer status bits available at port BB can tell much more
than whether the printer is ready to receive another character. For
example, with the Okidata 92 printer, the BASIC expression 6 AND
INP(187) gives the following values:

6- If printer is not connected

0O- If printer is connected, but the printer power is off.
4- if printer is out of paper or off-line.

2- {f printer is on-line and ready.

FEach model of printer, however, handles conditions such as out
of paper and power off differently. Ina particular application you may
be able to write a program with messages like “Please turn on printer,”
and so on,

ROM Calls to the Printer

Some ROM printer routines have been published by Radio Shack
and are unlikely to change in the event of a ROM update. After calling
any of these, the user should test the carry flag upon return to see if the
effort to print was successful. 1f the carry flag is set, it means the printer
hung up and the break key was pushed. The routines are discussed in
turn.

PRINTR

This is the routine discussed above. The character to be printed is
placed in the A register and CALL 6D3F is executed. The BASIC
LPOS value, however, is not updated. All register contents including A
are preserved.

The Printer interface 183

PRTLCD

This.ro.utine dumps a copy of the LCD screen to the printer. The
routine is invoked by CALL IESE, which is the same as the address
BASIC uses when executing the keyword LCOPY.

PRTTAB

This routine, invoked by CALL 4BS55, sends a character in the

accumulator to the printer, relying upon and updating the LPOS
variable at F674. Tabs are expanded in software to spaces.

PNOTAB

This routine, invoked by CALL 1470, sends a character in the
accumulator to the printer, relying upon and updating the LPOS
variable at F674. Tabs are not expanded to spaces but are sent as they
appear. Use this routine if the printer you are sending to has tabs set in

hardware at nonstandard spacings, or if the printer itself can expand
tabs to spaces.

Printing to Dot-Addressable Graphics Printers

Many printers have escape sequences that allow control of indi-
vidual pins of a dot-matrix printing head. These sequences allow any of
the 256 possible eight-bit words to be sent to the printer. Unfortu-
nately, the printer driver invoked by the BASIC command PRINT
expands every 09 hex into one or more spaces, depending on the print
column position. This wreaks havoc on the escape sequences. In
BASIC, the way to send such a character is CALL 5232, char where
5232is the decimal equivalent of 1470 hex. The address is the routine
PNOTARB, and char is a variable or constant to be sent to the printer.

Unpublished ROM Routines

. The RST 4 opcode can be used for printer output if a flag at F675
1s set to a nonzero value. This is discussed in detail in chapter 13.

184 Inside the TRS-80 Model! 100 The Printer Interface 185
e

The routine at 4BAQ sends a carriage return to the printer, updat-

ing the LPOS variable.
g2
The Low Battery light. ;g
When the Model 100 is turned off and the printer is turned onand
connected, some printers cause the Low Battery light to turn on. A - g A
“sneak circuit” in the printer interface circuit allows this. E . 4
Referring to figure 10.1, note that transistor T8 is turned on I I —
whenever a printer strobe is desired by the CPU. This provides a
ground path to the strobe line in the printer, which triggers gates in the : — “}__/':__ N
printer to accept an incoming character. Y Y -
Within the printer, the strobe line must have a pull-up resistor to « *
plus five volts, If the computer is unplugged, the printer will not start E g g %
strobing in nonexistent data. The Model 100 also has a pull-up resistor, =3 & &
R 56, which is connected to the same 5 volt source as the Low Battery) Iy
light-emitting diode. To T T E - =
When the Model 100 is turned on and has sufficient power in the © B0
battery, transistor T17is off. It does not turn on T19 so that the LED is 3 z
kept off. If any current passes through R56, it passes toward the ;g’ ox E
printer. ° - | L
However, when Model 100 power is off, any weak voltage leaking e 2
back to T17, as from the printer through R56, turns T17 on. Asaresult, ' —> E
T19 turns on, and the weak voltage lights up the LED. 8
The best way to prevent this phenomenon is by installing a diode . - x -é
in series with R56, so that current can flow only toward the printer. £y x o =
Not all printers do this— only the ones in which the pull-up . §§ z §
resistor is small in resistance. ! S g
g
& Ny =
z© 23 S
-x ™~
za 8 o
L VoY S — 9_
l W
NS

11

Clock/Calendar

The Model 100 keeps time and date information even when it is
turned off. It does this through a sophisticated CMOS integrated
circuit, the Nippon Electric uPD1990AC. This chapter discusses this
chip and the associated circuitry and explains how you can use it,
through ROM calls and your own routines.

Terminology

Many devices in the Model 100 have signals and functions that
can be referred to by the term clock. For example, the CPU provides a
2.4576-megahertz signal known as CLK to the P10. Any output to port
E8 provides four CLK signals to flip-flop M 14, and bit 3 of output port
B9 provides a signal called CLK to the clock chip, M 18, We'll refer to
the circuitry collectively as the clock/ calendar chip.

187

188 Inside the TRS-80 Model 100
Clock/Calendar 189

Hardware Theory of Operation

The uPD1990AC integrated circuit, designated M 18 inthe Model
100, is one of the chips that receives power from the AA cells or AC
adapter when the ON/OFF switch SW-5 is off. This power supply,
designated VB, is also supplied to the RAM chips and is backed up by
the nickel-cadmium cell, so that the clock and RAM information are
not lost when the AA cells are changed. The chip draws only a few tens
of microamperes when keeping time.

With its crystal X1, which oscillates at 32768 hertz, it is able to
keep time and date information current. The designers of the chip _ ' _I_
chose 32768 because that frequency, divided by two fifteen times, F
becomes one hertz and is suitable for updating the seconds part of its -
memory. The other crystals in the Model 100 are X2, which provides : s
4.9152 megahertz to the CPU and X3, which provides | megahertz to ——]
the modem chip. Neither provides a simple power of two. : — 3 —

“The clock/calendar chip is composed of an oscillator, divider, '
time counter, shift register, and associated contro} and switching cir-
cuitry. Once it is given the values, it maintains seconds, minutes, hours,
day of the week, day of the month, and month in the time counter
(shownin figure 11.1). Long and short months are properly accounted
for, with the exception of February 29th in a leap year.

The year is maintained not by the chip but by the ROM operating
system. You may already be familar with one bug. Occasionally the
year will be incremented when it should not be; this is not the fault of _
the chip.

The time and date information in the time counter comprise forty I
bits of data. From time to time, this data must be loaded to and from
the CPU. To reduce the physical size of the chip, its designers chose to
use serial data transmission, which requires fewer pins than parallel
transmission. The chip includes a forty-bit shift register, used for
loading data into and out of the chip. Commands to the chip allow it to
load serial data from the CPU into the shift register, from the shift
register into the time counter, from the time counter into the shift
register, or from the shift register serially to the CPU.

In addition, the chip can also programmed to provide timing
pulses (TP) of 64, 256, or 2048 hertz to the CPU interrupt RST 7.5,

NoCH
OPEN
DR AN
DATA
ouT
N-CH
OPEN
RAIN
L)

XER
H GNO
i |
GND

|

|

|

i

|

|

MULTIPLEXER

—
J

MULYTIPLE

el
nr

i
CHIP SELECT
TIMING PULSE

PRESET

: SERIAL DATA

O/W . DAy OF THE WEEK

50
PS5
cs
TP

32 Mz
69 H
256 2
2048 Hz

Vopl+!

TIME COUNTER

GND(vgg)

%5 STAGE BINARY [WwiDEW

TEST

40 BiT SHIFT REGISTER
HOWR

Gave

LAYTCH 7 DECODER

COMMAND

oW
[
—

PS

CLK
S0
PS5

QsC

sTB

ouy
ENBL
CLK
DATA
iN
XTaL
X1aL
]
<

Figure 11.1. Clock/calendar architecture

190 inside the TRS-80 Model 100

The commands which may be sent to the clock/calendar chip are
summarized in table 11.1.
Table 11.1. Clock/calendar set/read commands. The command
value is placed in output port B9, then the clock is strobed by
momentarily turning on bit 2 of output port E§ {or by using CALL 7383).

Clock/Calendar 191

Command
Value
(hex) Function
00 Register hold (normal timekeeping}
01 Commences shift register loading (both in and out)
02 Load shift register into time counter (set time)
03 Load time counter into shift register (read time)

The digits of time and date information are loaded into or out of
the chip, as shown in table 11.2. The chip uses BCD (Binary Coded
Decimal) format, in which 0000 means zero, 0001 means one, and so
on, up to 1001 which means nine. Obviously BCD has much in com-
mon with hexadecimal notation; the major difference is that values like
1010 have no meaning to a machine using BCD.

Table 11.2. Digit sequence for chip loading

Bits Meaning Format

0-3 Seconds units BCD

4-7 Seconds tens BCD

8-11 Minutes units BCD

12-15 Minutes tens BCD

16-19 Hours units BGD

20-23 Hours tens BCD

24-27 Date units BCD

28-31 Date tens BCD

32-35 bDay of week 0=Sunday, 6=Saturday
36-39 Month 1=January, 0CH=December

Setting the Time in the Clock/Calendar

To set the time, the shift register must be loaded with the desired
time/date information. The register is loaded serially; the serial load
mode is commanded by loading output port B9 with the shift com-
mand 01 and then strobing the clock /calendar, as shown in figure
11 3a.

Strobing the Clock/Calendar

Strobing is performed by turning bit 4 of output port E8 on and
then off. Because the ROM operating system stores the contents of
output port E8 in RAM at FF435, the proper way to strobe a clock/ ca-
lendar command is as follows:

ouT Bg ; OUT (B9),A command to port B9
LDA FF45 ;LD A,(FF45) get contents

QRI1 04 ;OR 04 turn on bit 2
QUTE8 ;OUT (EB),A strobe the chip

ANI FB AND F8 turn off bit 2

QUT E8 ; OUT (E8),A finish the strobe
RET RET wasn’t that easy?

This routine is available at 7383 through 7390 in ROM and can be
invoked by a CALL to 7383.

Output port B9, however, is used for many functions other than
sending commands to the clock/calendar. These functions include
LCD, LPT, and keyboard control. If interrupts are enabled, it is
possible for the contents of output port B9 to change between the load
in the beginning of the subroutine and the strobe at the fourth line.
Thus, it is necessary to disable interrupts during the routine; all the
ROM routines which use CALL 7383 have interrupts disabled at the
time of the call.

Once the shift mode is selected, the clock/calendar chip pays close
attention to bits 3 and 4 of output port B9. The contents of bit 4 (either
1 or 0) will be understood later by the chip to be bit 0 of the seconds (as
shown in table 11.1).

Bit 3 of the port is then turned on and bit 4 is left in its previous
state. Turning on bit 3 provides a so-called CLK input to the chip,
which causes the contents of bit 4to be loaded into the shift register.
Bit 3is then turned off. This is shown in figure 11.2.

The process is repeated for the remaining thirty-nine bits; after
receiving the forty CLK inputs, the chip is no longer in shift mode, This
is shown in figure 11.2.

Interrupts must be disabled during the entire process, so that the
only changes to cutput port B are those selected by the main program
(and not by an interrupt routine).

192 Inside the TRS-80 Mode! 100 Clock/Calendar 193

After the forty bits of new time/date information have been
loaded to the shift register, the chip must be commanded to load the

INPUT
TIMING
OUTPUT
TIMING

contents of the shift register into the time counter, as shown in figure
11.3b. This is accomplished by sending the 02 command, as listed in
table 11.1. Finally, the chip is allowed to go back to normal timekeep-
ing, by command 00, the register hold command.

Nothing in the hardware prevents the loading of meaningless
values, such as 1111, into the shift register of the chip. Doing so would
cause the chip to yield funny time values until the digit had been
incremented back to zero.

" WRITTEN —IN DATA LSB {"H")

JULY 16 [SUND

2 HOURS
NOV. 25 {SAT)

OF SHIFT MODE
24 MINUTES
35 SECONDS
2 HOURS
23 MINUTES
49 SECONDS
APPEARS AT OUTPUT

L

_

o CAUSES THE END

J

Reading the Time

The process of reading the time is similar to setting the time. First,
a read time command, 03, is strobed into the chip. This causes the
time/ date information to be loaded into the shift register, as shown in
figure I1.4a. Then a shift mode command, 01, is strobed into the chip.
The chip provides bit 0 of the shift register (the bottom bit of the
- seconds unit) to bit 0 of input port BB. As before, bit 3 of output port
—0 B9 gives a CLK signal to the chip. Turning bit 3 on and off again makes
N the shift register advance to the next bit. This is shown schematically in
Cm figure 11.4b.

After thirty-nine such loads and CLK signals {(see the bottom plot
in figure 11.2), the chip leaves the shift mode. The chip can be returned
to normal timekeeping by issuing a “&0” command.

33 34 35 36 37 38 39

D/W

| min

Selecting a TP Frequency

The Model 100 ROM relies on a 256-hertz TP signal. This is
provided by the clock/calendar to the CPU at its RST 7.5 interrupt
input. The arrival of the TP signal at the CPU causes it to execute an
interrupt routine if the RST 7.5 interrupt is enabled and unmasked.
The interrupt routine performs a number of functions, including key-
board scanning (see chapter 15.) By placing a vectorin RAM at FSFF,
the interrupt can be utilized for other purposes.

In such an event, you may wish to execute the TP interrupt more
or less frequently than 256 hertz. This can be accomplished by strobing
a value other than 05 to the clock/calendar, as shown in table 11.3.

| sec

J

89, BIT 4

BB, BIT ¢
Figure 11.2. Clock calendar strobing

DATA OUT
tNPUT PORT

o JIUULLTLUY g0t
QUTPUT PORT ‘ ‘ ‘ pa—
10 sec :
1
|
10 sec
RN’
T

OATA IN J
QUTPUT PORT mmm

124 Inside the TR$-80 Model 100

al T N
1
ADE"""’“""‘LD QIO
M4 —
40HITS —
CKk CLR
TR H !
WEF e,
RESET
TO CPU
RST 7.5
1
{4 n
1
Vg
ci8
OE DATA TP (5 STB 20pF
4 ouT 12
cl1g M8 -

I7
0.047uF xPDI990AC %OF
2s5v. . 13 |

DATA

iN CLK C2 €¢I €O
SET I | | [!
MODE "SHIFT" - - 0 0 |
SET DATA o/ 0 - - -
CLOCK DATA a7l i - - -

Figure 11.3a.

Setting the clock calendar

Clock/Calendar

195

R U
S
AD2 o Py
M4 L
R A0H175 -
CK CLR
— a I]
YE ———=0 6’
i s Mz domd
wWR — — 2o
RESET
T0 CPU
RST 7.5
b
Il
d
Vg !
CE DATA TP (S S8TB
19 ouT
C19
Mg
0.047uF
PD I
25y) @ 290AC
DATA
IN CLK €2 ¢l co
COMMAND
"SET TIME" -0 2 0
COMMAND "HOLD" - 0 0 o

Figure 11.3b. Setting the clock calendar

Ci8
20pF
2
- 17
20pF
13 .

Clock/Calendar 197

196 Inside the TRS-80 Modei 100

-y TN
: I
al l—/‘\/\/ . . ADD IQD 0‘0
' Mia -
o 2 10 : 1 aomrs [
AD2 «—0 a 3
S = ' CK CLR
| aoHITS L g B . | ‘
' ; Y6 — =77 ¢ | 47
CK_ CLR : — s M3
cz_.4 H ' WR¥ — — 2o
—d7T 1
—YG SVC'" = RESET
WRE 24
RESET
gt
INPUT PORT BB-BIT 0 TP
. P
TP : s
A : %ﬂ
- ; v |
B | | CE DATA TP €S 578 s
20pF
Ve ' : 14 ouT "
OE DATA TP £S5 STB 18 :
20pF : cis Mg
= ! 2 0.047ufF «PBISZ0AC = CI7
5 20pF
25V "
clg Mig8
0.047uF wPDI9S0AC = ci7 : 0aTA
2BV 3 20pF iN ¢k 2 cCl co
oata N
N CLx €2 CI Co COMMAND "SHIFT" - 0 0 [
| P | . READ DATA - s - -
SEND CLK - |
*READ Ti o COMMAND "HOLD" - o o 0
READ TIME" ;

Figure 11.4b. Reading the clock calendar

Figure 11.4a. Reading the clock calendar

198 Inside the TR5-80 Model 100

Table 11.3. Clock/calendar TP commands.
The command value is placed in output port B% and the clock is strobed by
momentarily turning on bit 2 of output port E8 (or by using CALL 7383).

Command interrupi
Value Frequency
{hex) Seilected

04 64 hertz
05 256 hertz
06 2048 hertz

The TP frequency is selected in ROM during the power-on
sequence, at 6CEB,

Clock/Calendar Accuracy

The clock/calendar keeps time as accurately as a gquartz watch.
The temperature of the crystal affects timekeeping; extremes of
temperature throw off the time noticeably.

Most CPU functions, including enabling and disabling of inter-
rupts, do not affect the clock. This will be a surprise to Model I/11I
owners, as with these computers the clock accuracy is affected by the
amount of disk usage.

In particular, the power-up routines do not affect the chip which
continues to keep time whether power is on or off. It is reset only by the
BASIC TIMES$=, DATES$=, and DAYS$= assignments, or by a reinitial-
ization of RAM.

Published ROM Routines

Three routines have been published which allow you to determine
the time and date. Prior to calling any of the routines, buffer space
should be set aside for the answer, and HL should be set to the starting
address of the buffer to which the information will be returned. The
routines are listed in table 11.4.

Table 11.4. Routines to obtain time and date

Data Routine Number
Desired Location Format of Bytes

Time 180F hh:mm:ss 8

Date 192F mm/dd/yy 8
Weekday 1962 ddd 3

Clock/Calendar 199

Unpublished Routines

A portion of the date or time information can be determined by
accessing the location in RAM where the information is stored. The
addresses are given in table 11.5. Before using these values, RAM
should be refreshed by calling the ROM routine at 19A0.

Tabte 11.5. Date and Time locations in RAM after call to 19A0.
Values are BCD unless otherwise noted.

Address Contents
F023 Seconds units
Fo24 Seconds tens
Fa25 Minutes units
Fo26 Minutes tens
F927 Hours units
F928 Hours tens
F929 Date units
FOZA Date tens
F92B Day of week (0=Sunday, 6=Saturday)
FazC Month (G=January, C=December)
Faz2D Year units
FO2E Year tens

Note that table 11.5 resembles table 11.2. That is due to the fact
that the routine called at 19A0 loads the clock/calendar shift register
directly into RAM starting at F923.

Note, however, that the butfer starting at F923 is much larger than
forty bits. In particular, each group of four bits from the shift register
ends up in a separate eight-bit byte in RAM.

Setting the Time through ROM Calls

The actual serial loading, both to and from the clock/calendar
chip, is performed by the routine at 7329 through 7390. The routine has
two entry points: 7329 to read time and 732A to set time. Prior to the
call, HL must point to a ten-byte RAM area, in the format shown in
table 11.6.

If the time-set entry point is used, the contents of the buffer are
loaded to the clock/calendar. Only the bottom four bits of each byte
are loaded to the chip, and no checks are undertaken for correctness of
format. Forexample, 00001111 could be loaded and it would not make
sense to the chip, since 1111 is not a correct BCD value.

200 Inside the TRS-80 Model 100

If the time-read entry point is used, the contents of the clock/ca-
lendar are loaded to the RAM buffer. The top four bits of each byte are
ZEero.

Table 11.6. Buffer for routine at 7329 and 732A
Values are BCD unless otherwise noted.

Address Contents

HL+00 Seconds units

ML+ Seconds tens

HL+02 Minutes units

HL+03 Minutes tens

HL+04 Hours units

HL+05 Hours tens

HL+06 Date units

HL+07 Date tens

HL+08 Day of week (0=Sunday, 6=Saturday)

HL+09 Month {G=January, C=December)

Rotations of the accumulator are used to select bits to be loaded to
and from the serial input and output of the chip. The code is fascinating
and well worth disassembly and study for those who wish to under-
stand how a CPU can undertake serial input and output without a
UART.

Comments are provided in figure 11.5.

7329 entry point for update of RAM
732A eniry point for update of chip
732C disable interrupts
7331 if in RAM update mode, strobe a time read command to chip
7336 strobe a shift mode command
7339 delay forty microseconds
733E ten digits are loaded
7340 each digit is four bits
7344 RAM update mode?
7348-D if 50, get bit 0 of input port BB
7352-B chip update mode? if so, send a bit to port B, bit 4
735D-83 send a CLK pulse to chip
7376 chip-set mode?
7377-9 if s0, set time
737C-D et chip return to normal
7380 reenable interrupts, return
7383-90 routine to strobe the chip with command in accumulator

Figure 11.5. Comments for serial clock/calendar routine

12

Cassette input and Output

The cassette interface of the Model 100 is used for storing and
loading data, BASIC programs, and machine-language files.

Three file formats arc used, and they correspond to the three types
of RAM files: DO, BA, and CO. Data files are written on tape in
256-character blocks, each with checksum. Basic and machine lan-
guage files are written in a single large (or small) block, also with
checksum. A machine-language file can contain addresses for loading
location and for the entry point at which execution is to begin.

201

202 Inside the TRS-80 Model 400

Accessing Data (DO) Tape Files from BASIC

Cassette data (DO) files may be easily accessed from BASIC,
using the OPEN and CLOSE commands and INPUT or PRINT
statements, The ROM operating system provides RAM buffers for
cassette input and output, both of which are so well integrated with
BASIC that one need pay no attention to the details of the tape storage
format.,

Creating a CO Cassette File

The CSAVEM command or (SAVEM command with CAS:
device specification) can be used if data is stored in memory which is to
be stored ontape and later reloaded in the same memory location. The
syntax is;

CSAVEM “filnam”, stadd, endadd, tradd

where filnam is a filename of one to six characters, and stadd and
endadd are the boundaries of the RUNM command. If no tradd value
is given at the time of the CSAVEM then stadd will be used.

Loading a CO File back into RAM.

When the tape file is reloaded to RAM with the CL.LOADM (or
LOADM) command, stadd and endadd, previously written to tape
with the data, are used to determine where in memory the data will be
loaded.

There is one other way to access a CO file on tape. The BASIC
command RUNM will load the data on the tape into RAM according
to the stadd and endadd stored on tape (just like CLOADM). BASIC
then commences execution of the program by JUMPing to the address
stored on tape as tradd.

Often one wishes to load a tape CO file into RAM at addresses
other than those stored on tape for stadd and endadd. The BASIC
OPEN command is no help, because it cannot be used to access a CO
tape file. The ROM routines for cassette [/ O happen too quickly for

Cassette Input and Qutput 203

use in BASIC through CALL commands, so one is pretty much limited

to assembly language for I/O involving machine-language cassette
files,

Accessing BA Tape Files From BASIC

You really can’tdoit. If you try to execute a CSAVE from withina
BASIC program (as distinguished from a CSAVE executed in imme-
diate mode), you will find that BASIC returns to the “OK” prompt
when the CSAVE is executed.

This happens regardless of whether the program containing the
CSAVE command has finished.

A similar problem occurs when CSAVE is used in the immediate
mode. For example, if you type:

CSAVE"A":CSAVE"A"

you will find the program is saved only once.

The CSAVE command can only be used to save the BASIC
program presently in the BASIC work area and cannot be used to save
some other BA file in RAM memory.

The CLOAD, LOAD“CAS:”and RUN“CAS:” commandscan be
used within BASIC. This causes the program being run to be destroyed
and the new program loaded in its place. The RUN command does
result in the execution of the new program and can be used for the
chaining of programs.

Hardware Theory of Cassette Operation

The 8085 CPU is specially designed for CPU-controlled serial
input and output. SID and SOD are dedicated chip pins used for
incoming and outgoing serial data, respectively. In the Model 100 these
pins are connected to the cassette interface circuitry,

Throughout the service manual the cassette circuitry bears the
cryptic legend “CMT™. Here the term “cassette” will be used.

204 Inside the TRS-80 Model 100

Incoming Cassette Data Flow

The cassette cord 26-1207 provides a connection to pin 4 (RXC) of
the CASSETTE connector (CN3), from the earphone jack of the
cassette recorder through the black plug, as shown in figure 12.1. At
CN3 the signal connects with the circuitry shown in figure 12.2. At first
glance it appears that diodes D5 and D6 prevent signals from passing
through to the operational amplifier (op amp) M30. This is because D6
will conduct, providing a short circuit if the incoming signal is positive.
If the signal is negative, diode D35 will conduct.

A diodelike D5 or D6, however has the interesting property that it
will never provide a short circuit. Instead, the amount of current
flowing through it will be limited in such a way that its presence in the
circuit never pulls the voltage across it to less than about 600 millivolts.
The forward-biased voltage drop is 600 millivolts,

The diodes act as a limiter or “clamp” on the amplitude of the
signal that reaches the op amp.

As aresult, great variations in the strength of the input signal will
not have much of an effect on the ability of the computer to read the
data. Any signal strong enough to saturate the diodes (more than 800
millivolts) will do just fine. Increasing the volume further will not
harm things either.

The input register R95 determines the input impedence, which is
100 ohms,

The audio signal, converted to a 600 millivolt square wave by the
diodes, isamplified by op amp M30 to a square wave of about five volts
magnitude. The op amp inverts the signal as the clamped audio signal
is fed to the inverting input of the amplifier.

This signal is inverted (and neatly trimmed to be a “clean” square
wave) by invertor M34, and is made available to the CPU at pin 5
(SID).

Cassette Input and Qutput 205

STANDARD
.
ear
BLACK PLUG o—= \’1: BLACK _.I
178" DIA] 7 —0 | @ axc
»——)I 2 GND
"AUX n
GRAY PLUG o i ’I‘__ RED 2 5| 5 TXC
178" DIA 7|

r_")‘ I REMI

" REM" 5: }] j-——}l 3 REMZ

GRAY PLUG o—== WHITE
3732" DIA

Figure 12.1. Schematic of cassette cable 26-1207

Hi36

A9 A5 2
00 R

RXE RS3
00K
GND C3 [}
152078 182076

R13

i

Figure 12.2. Incoming cassette data

206 inside the TRS-80 Model 100

Reading the Data at the SID Terminal

The CPU reads the contents of the S1D pin using the REM (read
interrupt mask) instruction. The RIM instruction and its counterpart
SIM, are the two instructions added to the 8080 instruction set by the
designers of the 8085.

The RIM instruction loads the Interrupt Mask to the accumula-
tor. For cassette purposes seven of the eight bits loaded are useless, only
bit 7 is meaningful. Bit 7isa “1”if the SID pinis receiving 5 volts,ora
“0" tf the SID pin is receiving zero volts.

In other words, positive and negative portions of waveforms from
the cassette correspond to I's and 0, respectively, at bit 7 of the
accumulator after the RIM.

Several programming methods may be used to handle the value at
bit 7. These include an AND with 80 hex or a rotate left instruction.
The latter requires fewer bytes to store in ROM and is used in the
Model 100 in its cassette bit input routine at 6FDB-7015.

The routine at 6FDB watches the SID pin carefully to see how
much time passes between the start and midpoint of one square wave,
with the result returned in the C register.

When the start of a waveform is noted, a tight loop examines the
SID pin repeatedly, incrementing C until the midpoint of the wave-
formisseen. Theloopis 29 CPU cycles long, or about 12 microseconds.

If the incoming waveform is 1200 Hertz, the time from start to
midpoint would be about 416 microseconds. One would expect C to
reach a value of about 35. However, if the incoming waveform is 2400
Hertz, one would expect the value of C to reach a value of about 17.

The bit-input routine has calls to 729F in each tight loop, so that
pressing the SHIFT-BREAK key wili allow a graceful exit from the
call, Each ROM routine that calls the bit-input routine hasa RC(RET
C) instruction after the call for the same reason.

The bit-input routine also contains instructions that call the
beeper-toggling routine at 7676 if sound is enabled according to the
flag at FF44. This is how the audio monitor of cassette loading is
accomplished,

Cassette Input and Qutput 207

OUTGOING CASSETTE DATA FLOW
The CPU’s Role

The CPU causes cassette output by wiggling the SOD line. In
ROM this is performed by the bit-output routine at 6F6A-6F84, The
routine produces a single square waveform (at the SOD pin) of either
2400 Hertz (if bit 0 is one) or 1200 Hertz (if bit 0 is 0), based on the value
at bit 0 of the accumulator.

The timing values in the D and E registers, set at 6F6B or 6F71,
determine the time delay between the upward and downward transi-
tions of the waveform, respectively.

The transitions in the SOD pin are accomplished by the SIM
instruction. Recall from the discussion in chapter 2 that the SIM
instruction leads a double life. It sets the SOD value and masks
interrupts depending on the condition of bits 6 and 3 of the accumula-
tor prior to executing the SIM instruction. For control of the SOD pin,
bit 6 should be on and bit 3 should be off. Bit 7 is loaded with the
desired SOD status, either a 1 or a 0. The SIM instruction is then
executed.

In simple terms, to turn SOD on, load D0 hex to A, then execute
SIM. To turn SOD off, load 50 to A, then execute STM,

The bit-output routine performs a left-rotate. Repeated calling of
the routine sends successive bits of the value in the accumulator to the
cassette. This can be seen in the routine DATAW at 6F5B-6F67, which
writes to tape the character in the A register. It simply sends one
1200-Hertz cycle, then calls the bit-output routine eight times, sending
eight square waves, each of which may be 1200 Hertz or 2400 Hertz.

Hardware Treatment of the SOD Signal

If you try to record a square wave and play it back, the result will
no longer be a square wave. This is because the sharp corners produce
unwanted signals (harmonics, in the language of Fourier analysis) as
the wave passes through the system. To avoid this, the square wave
emitted {rom the SOD pin is passed through a resistor-capacitor
network designed to smooth the wave, as shown in figure 12.3.

208 Insice the TRS-80 Model 100

CMT CONNECTOR _}

Figure 12.3. Outgoing cassette data

Figure 12.4. Cassette motor control

]71
33«

$0p NI 1L

Cassette Input and Output 209

The recording level in most recorders cannot be adjusted and is
instead determined by an ALC (automatic level control) circuit which
adjusts the recording level according to the foudness of the incoming
signal.

The ALC circuit requires a fraction of a second to stabilize when
encountering a signal after a period of silence. Therefore it is good
practice to write a few cycles of “leader” before each stretch of data.

Iinterrupts

Obviously any routine, whether a routine from ROM or one you
write yourself, which is designed to read or write cassette data, must
have interrupts disabled. If interrupts were handled the timing loops
would be thrown off.

Motor Control

‘The CPU turns the cassette motor on and off by way of bit 3 of
output port E8. As that port controls other functions, including the
option ROM, the printer strobe, and the clock/calendar strobe, it is
important to change only bit 3 when it is desired to turn the motor on
or off. The ROM routines store the current contents of the port in
FF45, and you should do this too.

The contents of FF45 are ORed with 08 to turn bit 3 on and
ANDed with F7 to turn bit 3 off.

Once the bit is set, the accumulator may be loaded to port E§ and
also to FF435,

Asshown infigure 12.4, the value at bit 3 of the output port drives
a flip-flop M 14 to produce a signal called REMOTE*, which is low
when the Motor is on and high when the motor is off. Remote* is
inverted by M34 so that a “1™ at bit 3 turns the transistor on. Turning
the transistor on provides a ground path for the coil of relay RY1.
Energizing RY1 closes the contacts (which are normally open) which
shorts pins 1 and 3 of the CASSETTE connector CN3.

210 Inside the TR$-80 Mode! 100

These two pins, designated REM1 and REM2 in the Model 100,
are connected by the cord to the 3/32” gray plug, as shown in figure
12.1. That plug is intended to go in the “REM" jack of the recorder,
which turns the motor on and off. (Obviously the REMI/REM?2
control capability may be used for control of other things, as long as
the current is not too great.)

The one place in ROM where bit 3 of output port E8 is controlled
is at 740F. The routine there is jumped to by the motor-off and
motor-on subroutines discussed below.

Published ROM Subroutine Calls

Before cassette data is read or written, interrupts must be disabled
and the motor turned on. Both can be accomplished by a call to CTON
at 14A8.

The motoris turned off, and the interrupts are enabled byacallto
CTOFF at 14AA,

Writing to Cassette

The routine DATAW, called at 6F5RB, writes the byte of datain the
accumuiator to tape. (This routine is discussed above). If the SHIFT-
BREAK key is pushed, the routine will return with the carry flag set.

The routine CSOUT, called at 14C1, sends a character to the
cassette, keeping track of a checksum. Prior to the call, the byte to send
is in the accumulator and the current checksum is in C. After the call,
the updated checksum is in C. (This routine calls DATAW, s0 it also
returns with the carry flag set if the SHIFT-BREAK key was pushed.)

By “checksum™ we simply mean a running total of bytes sent to
tape. The values are added, ignoring the carry bit.

The routine SYNCW, called at 6F46, writes a header and sync
byte to cassette. The header is composed of 512 bytes, each 01010101,
all run together end to end. This is the steady tone you hear at the
beginning of any cassette load. The sync byteisa 01111111, whichis a
warning to the cassette input routine that the 0 ’sare almost at an end,
and that what follows is real data.

This routine will exit with the carry flag set if the SHIFT-BREAK
key is pushed.

Cassette input and Output 211

Reading From Cassette

A single byte may be read with DATAR, called at 702A. DATAR
uses the bit-input routine discussed above. Upon return from the
bit-input routine, DATAR examines the C register to sec how long the
waveform was. The threshold applied is 21 decimal or about 2000
Hertz. The | or 0 is shifted, and the bit-input routine is called again
until eight bits have been received (or the SHIFT-BREAK key
pushed).

The result of the read appears inthe D register. Like all the “read”
routines, it checks to see if the SHIFT—BREAK key was pushed.
DATAR responds to that event by returning with the carry flag set.

The routine CASIN, called at 14B0, reads in a character bycalling
DATAR. If the SHIFT-BREAK key was pushed, the routine ends by
turning the motor off and jumping to the BASIC routine that displays
the *10”error message on the screen. (If youdon’t want this response to
a SHIFT-BREAK, you can adopt the code from 14B0 to 14C0),

The routine will update the checksum value residing in the C
register.

The routine corresponding to SYNCW above is SYNCR. This
clever routine, called at 6F85 and located in ROM at 6F85-7042 listens
to the tape until it finds that the incoming signal is between about 660
and 5300 Hertz, figures out where the 01°% are, and then waits for the
sync byte (the 7F mentioned above). At that point, or when the
SHIFT-BREAK key is pushed, it returns.

Unpublished Routines

The routine at 22B9 sends DE bytes to cassette, from a buffer
pointed to by HL. This is followed by a checksum designed to add up
with the previous bytes to make a total of zero, followed by twenty 0
bytes. The routine then turns the motor off and jurmps to 0501. Since it
never returns, it is unsuitable for assembly language use. It may,
however, be adapted to make a good block-write routine.

The routine at 2413 will load up to 256 bytes from cassette into the
RAM buffer pointed to by HL. The DE register-pair contains the
number of bytes to load. For 256 bytes, the register should coniain 00.
When the routine finishes, the checksum for these bytes is in A.

212 Inside the TRS-80 Mode! 100

By convention blocks of data are written so that the checksum is
zero. When the routine is finished, if the checksum is zero, the Z flagis
set, representing a successful load.

File Formats

Cassette files are composed of two or more blocks, each of which
starts with a header and a sync byte.

The first block in the file contains a header {512 bytes of 55H), a
sync byte (7F), the file type (9C for “DO™ files, DO for “CO™ files, D3
for “BA™ files), the filename (six bytes), and other information (10
bytes).

The second and subsequent blocks are composed of a header (512
bytes of 55H), a sync byte (7F), a data indicator (8D), and then the data
followed by a checksum. DO files are broken up into 256-byte blocks,
while BA and CO files have one enormous block for the whole file
contents.

A file may be opened using the subroutines listed in table 12.1. In
each case, prior to the call, the filename must be stored at FC93. Other
data, if any, is stored at FACE.

Table 12.1. Call locations for file OPEN

File Open for Cpen for
Type Symbol Output input

BA b3 260B 2650

COo Do 2611 2656

DO 9C 260E 2653

User Experimentation

Nothing in the hardware requires vou to use frequencies of 1200
and 2400 Hertz to store data. Nor is there any requirement that the
storage technique be single square waves of particular wavelengths.
Feel free to modify the ROM bit-input and bit-output routines, or
write your own routines for other formats.

Cassette Input and Output 213

Foranexample of another format, see MCS-80/ 85 Family User’s
Manual, pages Al-38 to Al-42. There, bursts of tone and periods of
silence of varying duration are used to represent 1’s and 0.

It is also possible to vary the format of data within a cassette file. It
is not necessary to use the BA, CO, or DO cassette file formats if you
are willing to design your own format.

13

The Liquia-Crystal Display Screen

The Model 100 top panel contains a screen composed of a rectan-
gular array of so-called “pixels”, 240 across and 64 down. Each pixelis
about 0.8 millimeters square. The pixels are part of what 1s called a
liquid crystal display.

How Liquid Crystals Work

If you hold two polarizing filters between your eye and a table
lamp, you will find that the amount of light that passes through is a
function of the angle between the two filters.

One easy way to try this is to obtain two sets of Polaroid™
sunglasses. Hold one pair with the lenses side by side and the other pair
with the lenses one above the other. No light will pass through. If the
glasses are held with the lenses side by side, light will pass through.

215

216 inside the TRS-80 Modetl 100

This is due to the fact that light can be polarized. When light
passes from the lamp-toward you and through the furthest polarizing
lens, it has been filtered so that all the light is polarized, Let’s assume it
is polarized vertically. When this vertically polarized light reaches the
lens closest to your eye, it will pass through only if the lens is turned the
same way as the first lens (so that it also passes vertically polarized
light).

Some transparent substances have no effect on light passing
through them, while others will twist the polarization of light passing
through them. Depending on the particular substance and the distance
travelled through the substance, vertically polarized light may be
converted to horizontally polarized light, and vice versa,

Such substances are not hard to find. Everyday dextrose, a com-
mon sugar made from corn, will twist polarized light. Its very name
was chosen because it twists light to the right. “Dextro-"is a prefix
which means “to the right™,

A liquid-crystal display is composed of a carefully prepared liquid
placed between two glass panels. The top panel includes a polarizing
filter; the top and bottom panels contain nearly transparent electrodes
extending vertically and horizontally.

Room light striking the screen passes first through the polarizing
panel. The furthest penetrating light is the light which is polarized, say,
vertically. This light bounces off the bottom panel, and (if the polariza-
tion has not changed) passes through the polarizing panel a second
time, reaching the eye. Any part of the screen where this occurs is
perceived as being light in color.

The liquid is designed to twist the light when it (the liquid) is
subjected to an electric field. For a certain pixel to be perceived as dark,
the LCD driving circuitry must activate the row and column electrodes
associated with that pixel every so often. This occurs once every
fourteen milliseconds and lasts about half a millisecond.

The electric field being emitted from the electrodes causes the
liquid to twist the light a certain number of degrees.

The Liquid-Crystal Display Screen 217

The eye’s viewing angle has an effect on the amount of polariza-
tion associated with the glass panels, so that no single number of
degrees of twist will produce a dark panel for all viewing angles. The
rotary control DISP on the right side of the Model 100 is a potentiome-
ter, which varies the voltage used to activate the pixels and optimizes
the appearance of the screen for a particular viewing angle.

CPU Control of the Screen

CPU control of the 15360 pixels is accomplished through ports FE
(LCD data)and FF (L.CD status/command), as well as output ports
B9and BA. Specialized integrated circuits (HD44102 and HD44103)
are used to drive the pixels, and provide the 15360 bits of RAM
memory needed for L.CD operation. (A detailed discussion of LCD
170 ports is beyond the scope of this book. For further information,
see the Model 100 Service Manual pages 4-13, 4-14, 4-28, 4-29, 4-30,
7-1,and 7-2.)

The 15360 bit RAM memory mounted on the LCD printed circuit
board is not directly addressed by the CPU. Instead, it is loaded
through the I/O ports. Some of the regular RAM memory, located
from 8000 to FFFF, however is allocated to LCD data. The area from
FEOO to FF40, for example, contains the ASCII values presently on
the screen. This is the source of information used when BASIC per-
forms the LCOPY command.

It is clear however, that the actual screen contents (the on/off
states of the pixels) are not found in RAM at FE00-FF40. For exam-
ple, if PSET and PRESET are used to turn pixels on and off, the
LCOPY command will not convey the results to the printer, even if the
pixels form a printable character. Similarly, the patterns that reach the
LCD by means of PSET and PRESET will not scroll upwards when
the rest of the display does.

Character Formation

When sending data to the LCD screen, the CPU does not send
ASCII values to the integrated circuits on the LCD board. Instead, it
sends 1’s and 0’s which are to be stored in the LCD RAM. The LCD
RAM is used to drive the individual pixels.

218 Inside the TRS-80 Model 100

The ROM routines used by the CPU in handling screen output use
several different routes for the data. In the case of pixel-specific rou-
tines like PLOT and UNPLOT {used in the BASIC commands PSET,
PRESET, and LINE) the ROM routine sends addresses and data to
the LCD chips to affect only the pixels in question.

When ASCII characters are printed to the screen, the routine first
loads the ASCII value to the RAM area FEOO-FF40. It later interprets
the ASCII value according to a ROM table to determine which bits
must be turned on and off to form that character.

Formation of Character Shapes

No character shape information is needed for ASCII values from
0 to 31 {decimal) as these are not printable characters, They instead
merely cause cursor movement, etc.

Since each character printed on the screen lies in an array that is
six pixels wide and eight pixels deep, forty-cight bits of data are
required to define the whole character. (It happens that the rightmost
column is always empty in the case of ASCII values 32 to 127, As we
shall see, the ROM storage technique takes advantage of this fact to
save ninety-six bytes of ROM.)

The character-generation table begins at 7711 and runs to 7BFO0.
(The ROM routine that uses it is located at 73EE). To see how the table
works, print out (using the PEEK function) the five values starting at
memory address 78CE (30926 decimal). The contents of these loca-
tions are 28, 160, 160, 144, and 124. Now, convert each of these
numbers to binary notation. The results are 000111000, 10100000,
10100000, 10010000, and 01111100. If these binary numbers are writ-
ten in a column, something interesting will emerge, as shown in figure
13.1.

30026
30927
30928
30929
30930

[T 1}

Figure 13.1. Lower-case “y

The Liquid-Crystal Display Screen 219

Do you see it? Turn the page sideways, and you will see a lower-
case “y” among the I’s and 0’s.

The table begins at 7711 with the pixel information for an ASCII
32(decimal) whichis a space. As you would imagine, it is composed of
all zeros. The table continues, five bytes at a time, through ASCII
values 33 to 127,

At location 78F1 the table changes. Since many of the characters
beyond 27 use all six columns of pixels, six bytes of data are used for
each character. The character with value 128 (which looks a little like a
telephone) occupies 78F1, 78F2, 78F3, 78F4, 78F5, and 78F6. From
this point to the end of the table, each character uses six bytes. The
table finishes at 7BEB-7BF0 for the character with value 255.

It is interesting to use this ROM table to generate the screen
characters yourself. The program in figure 13.2 prints the 224 printable
characters of the Model 100 to the screen. Each character is displayed
twice — once in the normal way by use of the BASIC PRINT com-
mand, and a second time with pixels turned on one by one to form the
characters.

The two images of the character are identical in appearance
because they are both based on the bit-graphics information in the
ROM table. What's different is the sort of programming that puts the
bits on the screen. When the PRINT command is executed, BASIC
invokes machine-language subroutines which extract the information
from the ROM table and put it on the LCD screen — all the pixels turn
on, forming the character, virtually simultaneously. The second char-
acter image reaches the screen much more stowly (you can see that the
pixels turn on one by one) because the calculation of which pixels to
turn on is dene step-by-step in BASIC.

The BASIC PRINT statement gives the ASCIH value to an assem-
bly language routine in ROM, which uses the machine language sub-
routines PLOT and UNPLOT to turn on the proper pixels.

220 Inside the TRS-80 Model 100

10 CLS:FOR CR= 32 TO 255: PRINT @129, CR;
:PRINT@134, CHR$ (CR);JIFAS < 128THEN
AD=30481+(CR-32)*5
ELSEAD=30961+(CR-128)"6

14 FOR COL=0 TO 5: BY=PEEK(AD+COL)
AFCR < 128 AND COL=5 THEN BY=0

16 FOR ROW =0 TO 8:/F BY AND {2 AROW)
THEN PSET(96+COL,24+ROW)

EL.SE PRESET(96+COL,24+R0OW)

20 NEXT ROW:NEXT COL:BEEP

100 IF INKEY$="" THEN 100
ELSE NEXT CR:END

Figure 13.2. Program to demonstrate the ROM character-
generation table.

If your printer includes bit-addressable graphics, such as the
Epson MX-80 with Graftrax, you can print the CODE and GRPH
characters directly at the printer. A program to print the valuesintable
13.1 is shown in figure 13.3. '

10 kI=31729 : e$=chr${27)+chr$(75)+chr$(6)+chr$(0)
:for as=32 to 127:for ki=0 to 43: if peek(kl+kt)
< >-as then 1000 else for co=0 to 5:
va=peek(kl+kt+co*44) :if va =0 then Iprint space ${12);
:goto 900
20 lprintusing™ #H##
wvaglprinte$;:ad=5"va+30321:
if va>127 then ad=va*6+30193
30 for bi=0 to 4: a=peek (ad+bi) ;gosub 2000
:next bi: if vaz>127 then a=peek(ad+5)
:gosub2000 else a=0:gosub 2000
900 next co:lprint
1000 next kt:next as:end
2000 al1=0Qforib=0to 7:
al=al or ((aand 2 (7-ib})<>0}and 2 ib)
next ib: call 5232, a1:return

Figure 13.3. Program to print Madel 100 characters to
bit-addressable dot-matrix printer.

The Liquid-Crystal Display Screen 221

Let’s analyze the program line by line and see how the printing is
accomplished.

Line 10 sets up a FOR loop which picks an ASCII value and
searches the keyboard-decoding ROM table (see chapter 6) for the
place in the table where that lower-case key is located.

When a particular lower-case key is found, the uppercase GRPH
SHIFT-GRPH, CODE, and SHIFT—CODE ASCII equivalents are
extracted from the keyboard-decode table through the expression;

va=peek{kl+kt+co 44)

The resulting six ASCII numerical values are printed by lines 20,
30, and 2000. In a few cases there is no ASCII value. For example, no
value is assigned to CODE-G. In such cases the program simply prints
twelve spaces.

The Epson printer with Graftrax uses escape sequences to output
the bit-addressable graphics. The sequence is an escape (decimal 27),
the letter N (decimal 75), the number of columns to be printed bit-style
(decimal 6), and a null (decimal 0). The next six values received by the
printer are generated much like the array in figure 13.1. Each *“1”in
binary notation results in a dot on the paper from the print head.

Unfortunately, the Graftrax protocol assigns the bits to the paper.
“upside-down” from the way the Model 100 assigns the bits to the
screen. The FOR loop of line 200 inverts the bits before printing.

The BASIC PRINT routine converts any ASCII TAB (decimal
value 9) to a varying number of spaces based on where the Model 100
thinks the printer carriage is positioned on the printer. This is handy
for Radio Shack printers that don’t know where the next tab stop is,
but can cause problems when you want to send escape sequences which
sometimes contain the value “9”.

The PRINT routine can be circumvented with a machine-
language subroutine call as shown on line 2000.

929 Inside the TRS-
e TRS-8 The Liquid-Crystal Display Screen 223

RAM Locations Relating to the Display

A number of RAM locations are set up when the Model 100 is

initialized, and should be left undisturbed, as should everything above
F5F0, by any user program. The most commonly used values are listed
N ¥ y
Unshi fted SHIFTed GRFH SHIF T-GRFH CObE SHIFT-CORE : .
— 0 I —_— - O — o in table 13.2.
‘?‘Z T4 v 140 = ten - 164
. LRI 4 152 + 248 <+ 188 o 221 w0 :
. b S 1‘?? 129 197 - 167~ : Table 13.2. Display variables in RAM
.) = % 247 4 207 &
2; - &3 178 = 174 % ; Name Address Descriplion
] 41 g 125 = 175 166 ¢ . 43
49 1 oo 136 ops m 192 & 208 4 CSRY F639 Horizontal cursor position
fIR I = -] 156 o 224 . . .
51 3 Z5 8 57 277 . 197 & w0 g CSRX FB3A Vertical cursor position
ne4 I& % o a 22 K i i
o - EAR e o ' F63B Number of active cursor lines
- . 15% o e .
o e e 0w e ¢ o F63C Number of active cursor lines
= L -~-‘ﬁ e _‘ (¢ £ 4 N) : .
e F o e f 1a R0 g : F63D Line-8 lock flag
57 G 2 S & 211 a
56 s 186 3 zas | 173 % _ F&3E Scrolling disable flag
&1 = 47+ i4t #* 190 148 f 5, ”
Zi r] Se 176 - 181 - F&48 Reverse “video” flag
¥ E == 123 % 235 P 182 & 7 : :
ek se B 185 @ o | F675 Output flag 0=LGD 1=LPT
g9 &7 132 LA 182 © 171 @ g
T e =502 et A F788 BASIC POS value
a = =S 147« NI 198 2 214 : ;
107 . 7 F 1m0 1 P c o1t FCCO Beginning of aiternate LCD buffer
oa S 21 e s FDFF End of alternate LCD buffer
o ol raz 2 199 21T 1 BEGLCD FEQO Beginning of LCD memory
I~ 3 E -] @ [205 '] 217
167 754 igs - oEG 201 217 ENDLCD FFa0 End of LCD memory
108 1 7hao L 154 = AL | 202 & 218 &
108w E | 129 8 244 - 142 M
11 r TE [1540 % 205 i
1 = TR0 (S 242 4 187 & 178 & . .
1t e B0 F 178 B 281 - 172 Published ROM Subroutine Calls
P17 0y &1 o 147 % oTL 0™ 200 & b
114 r]I F 177 - 254 1 170 @ .
e i 175 = 276w 169§ tes & The most frequently used ROM callis LCD, at 4B44. The charac-
T 128 @1 P | 1846 & . .
117w g5 145 20 184 © 178 o ter in the accumulator is put on the LCD screen at the current cursor
e o ge 1R & T B .. . B
119w 87 1 148 # 210 - € . position, and the cursor moves to the right (and if necessary, to the next
176 ga 131 e 23 5 227 &
\ o1 S ran o 2es ¥ ey @ S ; line). This routine is somewhat like the Model I/ 111 routine VDCHAR
sED oz o 224 206 &)

at 0033. Assuming scrolling has been enabled, then scrolling will occur
if necessary.

The LCD routine 1s quite versatile. While no one would be sur-
prised at its response to printable ASCII values (decimal 32 and
above), the routine also handles certain values less than 32. These
values are shown in table 13.3.

Table 13.1. LCD characters

224 Inside the TR$-80 Madel 100

Table 13.3. Nonprintable values which may not be sent to
the LCD routine

Call ROM

Value | ASCII Meaning to Send| Address | Response

07 Bell 4229 7662 Beeping sound

08 Backspace 4461 Moves cursor to feft

09 Horizontal tab 4480 Moves to next tab
column- 8,16, etc.

0A Line feed 4225 4494 Line feed-column
remains the same

oB Vertical tab 4220 | 44A8 Home cursor

oC Form feed 4231 4548 Clear screen & home

oD Carriage return 44AA Cursor to left edge-row
does not change

1B Escape 43B2 interpret next character

* The nonprinting values are decoded according to a ROM table at
438A-43A1. The escape sequences, in turn, are decoded in 2 ROM
table at 43B8-43F9. The addresses of the routines to accomplish the
various escape sequences can be determined from the ROM table.
There are twenty-one permissible LCD escape sequences which are
listed in table 13.4.

Table 13.4. LCD Escape Sequences.

The Liquid-Crystal Display Screen 225

4A J4 454E Erase from cursor to end of
line
ERAEQL | 425D | 4B K 4537 Erase from cursor to end of
line
INSLIN 4258 4C L 44EA Insert a blank line on LCD at
cursor
DELLIN 4253 4D M 44C4 Deiete a tine on LCD at current
ling
CURSON | 4249 50 P 44AF Turn on cursor
CURQFF | 424E | 51 Q 44BA Turn off cursor
SETSYS | 4235 54 T 4439 Set system line (lock LCD
line 8)
RSTSYS | 423A | 55 U 4437 Reset system line {uniock LCD
line 8)
LOCK 423F | 56 V* 443F Lock LCD display (no
scrolling)
UNLOCK | 4244 57 W 4440 Unlock LCD display {(allow
scrolling)
4262 58 X 444A Repaint screen
59 Y 43AF Cursor position (see text)
BA J 4548 Same as printing 0C-clears-
screen
6C 1 4535 Erase entire line containing
cursor
ENTREV | 4269 70 ¢ 4431 Set reverse character mode
EXTREV | 426E | 71 q 4432 Turn off reverse character
mode

In other words, if a character value listed in table 13.3 1s “sent to

ROM
Name Call Hex Chr Address| Function

41 A 4469 Up one line unless already at
edge

42 B 446E Down one line unless already
at edge

43 C 4453 Right one space unless
already at edge

44 D 445C L.eft one space unless already
at edge

45 E 4548 Same as printing 0C-clears
screen

48 H 44A8 Same as printing 0B-moves
cursarto 1,1

continued on following page

the screen” by the LCD routine, the action shown in the table will be
taken. Ifthe character “sent to the screen”is an ASCII escape character
(decimal 27) then the character that follows will be interpreted as an
escape sequence as shown intabie 13.4 and not as a printable character.

* Radio Shack incorrectly lists this as ESC Y.

226 Inside the TRS-80 Mode! 100

Several of these routines are used directly by BASIC. The BASIC
command CLS is executed by means of a call to the CLS routine at
4231. (CLS is equivalent to the Model I/111 routine VDCLS at 01C9.)
Also, note that the BASIC command BEEP is executed by means of a
call to the routine at 4229 listed in table 13.3.

How to Send Special Characters

There are several ways to program each of the functions listed in
these tables. The first is simply to load the character (or characters, in
the case of an escape sequence) into the A register, and execute one or
more RST 4 instructions. This requires several opcodes to execute
however,

Alternatively, you can call the address listed as “CAIL1L address”
in the table. If you disassemble that code, you will find that in each case
the value is loaded to the accumulator, and the RST 4 is invoked.
Because these call addresses have been published by Radio Shack, they
are likely to survive any ROM upgrades.

Another means of programming the functions, in the case of the
escape sequences, is to use the ESCA subroutine at 4270. Before calling
the routine, piace the value of the desired escape sequence from table
13.4 in the accumulator.

Finally, it is possible in each case to directly call the routine shown
inthe “ROM address” column. The advantage is faster execution time,
while the disadvantage is that the address may change with a ROM
upgrade.

Sending a carriage-return-line-feed combination to the screencan
be accomplished with a call to CRLF at 4222 as shown below:

4222 3E op MV A,0D LD A, 0D
4224 E7 RSt 4 : send o L.CD
4225 3E 0A MVI A0A LD A, OA
4227 E7 RST 4

4228 C8 RET

This routine will save four bytes each time you use it.

The Liguid-Crystal Display Screen 227

Sending Characters to the Printer

The LCD routine is versatile in other ways. It relies on a flag
stored at F675 which, if zero, indicates that output should be directed
to the LCD, as the name suggests. If the value at F675 is nonzero, the
value in the accumulator will be sent to the line printer instead. This
may be seen, for instance, in the code for LLIST at 113B and the code
for LIST at 1140:

1138 3E o1 MVEA,D1 LD A, O
1130 32 75 F6 STAF675 LD (F675), A
1140 C1 POP B ‘peginning of LIST routine

To send output to the printer, simply set the printer flag at F675
before calling RST 4.

How to Call 4844

If you dissassemble all of ROM, you will sec that LCD is never
invoked by a CALL 4B44, Instead the ROM designers placed a JP
4B44 at ROM address 0020, so that an RST 4 (sometimes called an
RST 20) opcode may be used, saving two bytes of ROM each time it is
called.

Obviously, not all uses of the LCD routine may be accomplished
by an RST 4. For example, a conditional call cannot be accomplished
in less than three bytes. This may be seen in ROM at 4B3F and at
54BC.

Other Published LCD ROM Routines

Two routines ailow the machine language equivalent of the
BASIC commands PSET and PRESET (which are abbreviations of
“pixel set” and “pixel reset”). These are PLOT at 744C and UNPLOT
at 744D, respectively. In each case the pixel to be changed is addressed
through the DE register-pair. D contains the X coordinate between 0
and 239. E contains the Y coordinate between 0 and 63,

228 Inside the TRS-80 Model 100

Cursor Position Routines

The routine, POSITallows a machine language programto handle
the cursor directly. POSIT, at 427C, moves the cursor to the position
given in the H (column 1-40} and L (row 1-8) registers. This routine is
almost identical to and is accomplished by the ESC-Y sequence.

The ESC-Y sequence is four characters long. It is composed of an
escape (decimal 27), a Y (decimal 89). the desired row plus 31 decimal
(sum varies from 32 to 39), and finally the desired column plus 31
decimal (sum varies from 32 to 71). Building up this escape sequence
takes many bytes of instructions. The call to POSIT at 427C is always
more economical. To see this, look at the code at 427C-4289:

427G 3E 59 MVI A 59 LD A5G Y
427 CD 70 42 CALL ESCA

4281 70 MOV AL .desired row
4282 D6 iF AD!} 1F :make it printable
4284 E7 RST4 print it

4285 7C MOV AH :desired column
4286 C6 1F ADI1F

4288 E7 RST 4

4289 C@ RET

The routine is interesting for several reasons. First of all, it is the
only four character escape sequence for the LCD. Second, it illustrates
that characters in the escape sequence must be greater than 32 decimal,
(i.c. printable) so that the RST 4 routine won’t mishandle them. Third,
it shows what lengths Microsoft went to to make sure that the ROM
operating system is cleanly structured. Virtually all routines affecting
the screen are, at bottom, communicated to the screen through the
RST 4 routine. This allows the programmer in charge of RST 4 to be
sure that he has exclusive control over the inner workings of the screen.

The Liquid-Crystal Display Screen 229

POSIT is handy for moving the cursor about, as well as for
returning it to its former position when printing. To do this, get the
current cursor position with LHLD F639, store it with PUSH HL,
print at the screen as desired, and then execute POP HL and CALL
427C.

Unpublished ROM Routines for the LCD

Several routines are available which relate to the LCD, other than
those published by Radio Shack. These routines may change if the
ROM is altered creating problems.

A routine at 001 E simply sends a space to the screen. A call to this
location would take up three bytes, which is no savings over simply
loading a 20 hex to the accumulator (two bytes) and calling RST4. This
routine would only save bytes if you were at the end of a subroutine and
needed to print a space, then return. A jump (not a call) to 001E could
do both at once.

Another nice routine is located at 11A2. Assume HL pointstoa
string of values (known to be printable) terminated with a 00 hex.
Calling [1 A2 will send that string to the screen. An identical routine is
located at SA58.

Finally, a routine at 1BEQ prints up to 256 characters to the
screen, filtering out unprintable characters. The values are pointed to
by HL, and the number of values to print is stored in the Bregister. (To
print 256 values, load 0 in the B register.) This routine is handy for
memory dumps. One drawback is that carriage returns and line feeds
are suppressed. Recall that with this routine, as with any routine using
RST 4, the output may be routed to the printer simply by changing the
value at F675.

The routine at 27B1, in a rather circuitous way, sends to the screen
the character string pointed to by HL and ending with eitheran0 or a
quotation mark.

The routine at $791 sends to the screen the character string which
is pointed to by HL and ends with either a 0 or a quotation mark. The
whole output is preceded by a carriage return if the cursor is not
already located at the left edge of the screen.

14

The Bor Code Reader

The Model 100’s 9-pin connector labeled BCR with hardware
designation CN2, can be used to attach a bar code reader wand. Pins 5
and 7 are grounded, pin 9 is a 5 volt source, and pin 2 provides data to
the Model 100 from whatever is plugged into the BCR connector. The
pins are shown in the illustration on page 209 of the Model 100 user’s
manual.

The signal at pin 2 has two hardware designations— it is called
RXDB on page 209 of the user’s manualand RXD on page4-1] of the
service manual. Regardless of the designation, it goestwo places in the
Model 100 — to one of the interrupt pins of the CPU and to bit 3 of
input port BB,

231

232 Inside the TRS-80 Model 100 | The Bar Code Reader 233

The bar code reader interface circuitry is shown in figure 14.1. The
power for the wand comes from pin 9 of CN2 and is designated VDD.
The phototransistor signal enters the Model 100 at pin 2, designated
RXD. After inversion, the BCR signal goes to bit 3 input port BB,
implemented in hardware by port C of the PIO chip. The signal pathto
the CPU interrupt pin is designated RST 5.5,

The following BASIC program affords an easy means of examin-
ing how the input port functions:

WHITE LINE

1 1F 8 AND INP{187) THEN BEEF:GOTO 1 ELSE 1

Due to the pull-up resistor R70 at the input terminal, the expres-
sion 8 AND INP(187) evaluates to zero when nothing is attached to
CN2. As a result the ELSE clause of the [F statement is executed, and
no beep is emitted,

With a BCR wand attached {and no custom BCR software
loaded), touching the wand to a white surface should produce a beep.
This is because the wand contains a light source, powered by pin 9, and

a phototransistor, which grounds pin 2 when light is reflected back to
it.

BLACK LINE

g R70
$ 33K

M34
¢—— BCR
L+ RST 55

The interrupt capability of the BCR interface works through what
is called the RST 5.5 input of the 8085. Grounding CN2 pin 2 sends an
interrupt signal to the CPU. The interrupt status of the CPU, which
has been previously set by the SIM and EI or DI in structions, deter-
mines whether an interrupt will actually occur in response to the
interrupt signal.

Determining When to Start Reading a Bar Code

The most elegant (and complicated) method of determining when
reading of a bar code has commenced 1s through the hardware inter-
rupt. The El and DI instructions enable and disable interrupts (see
chapter 15). Thus, the DI instruction prevents the occurrence of an
interrupt due to grounding of CN2 pin 2.

If interrupts are enabled, namely if the El instruction has been
executed more recently than the DI instruction, then the most recent
update of the interrupt mask (done through the SIM instruction)
determines whether the BCR signal will be able to cause an interrupt.

Bar code reader interface circuitry

Figure 14.1,

234 Inside the TRS-80 Model 100

The SIM instruction (see chapter 2) fulfills either of two functions
depending on the contents of the accumulator. If bit 3 is set, the
interrupt mask is updated, based on bits 0, 1, and 2. If bit 6 is set, the
cassette output pin is updated, based on bit 7. It is possible to update
both, by setting bits 3 and 6. However such a practice is generally not
undertaken,

Of the three interrupts controlled by the interrupt mask, it is bit 0
which controls the bar code reader interrupt. Setting that bit masks, or
defers, any BCR interrupts. The present Model 100 ROM sets that bit
whenever it updates the interrupt mask, so that BCR interrupts are
never enabled,

Since the present contents of the interrupt mask are available to
the CPU through the RIM instruction (see chapter 15), it is possible to
read the interrupt mask into the accumulator, set or reset bit 0, set bit 3,
and execute the SIM instruction. This action masks or unmasks the
BCR interrupt without disturbing the status of the interrupt masking
for the other two interrupts (UART data ready and clock/calendar
timing puise).

Handling the Interrupt

As discussed in chapter 15, when the BCR interruptisenabled and
unmasked and when the interrupt occurs due to the wand encountering
a white surface, a subroutine call to 2CH occurs. 2CH is located in
ROM,; this location is a jump to F5F9. The user should put a jump to
the interrupt-handling routine at that address. The routine should end
with an El and a RET.

Polling the Bar Code Reader

BCR data can be input without using interrupts using a technique
called polling. When BCR data is to be input, the CPU repeatedly
inspects the incoming signal at bit 3 of input port BB. Usually the signal
is a logic zero, so a transition to a logic one indicates scanning has
begun. Since the remainder of the bar code is read rather quickly, the
CPU must monitor the input port very closely. The CPU ignores any
other inputs except the break key.

The Bar Code Reader 235

Reading the Bar Code

Reading the bar code is a complicated matter, Assuming the wand
moves along the image at approximately 33 inches per second, a code
one inch wide has come and gone in 30 milliseconds of read time. There
may be thirty bars in the code, meaning that sixty black/white or
white/black transitions must be detected, with an average of about 500
microseconds in between. The time interval between detection of each
pair of transitions must be noted for later analysis.

Here is a routine for detecting a pair of transitions, assuming a
white region has just been detected:

MVI D,00 ; how long is white band?
LOOP: IN BB : get BCR data

ANI 08 ;getbit 3

INR D

JNZ LOOP ;i stil white, loop

IN BB ; it's black, look again

ANI 08 ; maybe one black value

INR D

JNZ LOOP ; was a fluke

MOV M,D ; {HL) contains width of bar

INX HL

MVI D,00 ; how long is black band?
LOOP1T: IN BB ; get BCR data

ANI 08 ;getbit3

iINR D

JZ LOOP ; if still black, logp

IN BB ; it's white, look again

AN 08 ; maybe one white value

INRD

JZ LOOPT ; was a fluke

MOV MD ; (HL) contains width of bar

INX HL

The loops in the above routine each last 31 machine cycles, or
about 13 microseconds. The D register averages a final value of 40; Iess
if the band was narrow and more if it was wide.

When the entire code has been read, the intervals must be ana-
lyzed to see which bars and gaps were wide and which were narrow.
Then, based on the code being used (Universal Product Code, 3 of 9,

236 Inside the TRS-80 Model 400

Interleaved 2 of 5, Codabar, etc.), the wide/ narrow information must
be translated into digits or ASCII characters.

If the coding system includes a parity check, it is a good practice to
announce bad parity with a distinctive tone, giving the user the oppor-
tunity to scan the pattern again.

Using the BCR Connector for Purposes Other Than
Reading Bar Codes

Devices other than a wand can be plugged into the BCR connec-
tor. Any information source represented by a short, or open, between
pins 2 and 5 of CN2 may be read by the CPU as discussed previously.

It is a good practice to use an optocoupler to protect the BCR
interface. Use a standard coupler such as Radio Shack 276-1654, wired
as shown in figure 14.2. The resistor limits current to twenty milliam-
peres, protecting the five-volt supply and the light-emitting diode at
pins I and 2 of the coupler. Closing the switch causes a logic one at bit 3
of input port BB.

The Bar Code Reader 237

o
-
O
(o)) o~ o) ~
g ,
)
N‘
(Te) <
&
< 8
Ty} &
- g
! v
@0
~ 2
N S
g
=
43
S
2

—o_o—

Figure 14.2.

15

iNnferrupts

Rarely does any event proceed from start to finish without being
interrupted. For example, if you are reading a book and the telephone
rings, you are likely to put a bookmark in the book, answer the phone,
and later return to your reading.

Often in programming a computer to accomplish a task, the
equivalent of “answering the phone” is a useful addition to that pro-
gram. For example, when the Model 100 is executing TELCOM, it
monitors the keyboard to see if a key had been pressed since its last
check, When a key is pressed, the Model 100 must respond accord-
ingly. These responses might include: opening a file for uploading or
downloading, scrolling the screen, or transmitting a character to the
distant computer by way of the UART.

239

240 inside the TR$-80 Model 100

For these reasons, and for many others that will be apparent, the
Model 100 uses interrupts for several time-related functions. Interrupt
can be defined as a means by which program execution is interrupted
by a stimulus which originates outside the CPU. The CPU’ usual
sequential execution of instructions is brought to a temporary halt,
and control is transferred to program instructions stored at an inter-
rupt address associated with that particular interrupt. The CPU
address being executed at the time of the interrupt is stored on the
stack. This allows CPU instruction execution to resume properly once
the interrupt instructions have been executed.

When the conditions prompting the interrupt has been satisfied, a
properly written program invokes the RET instruction, returning pro-
gram control to the address about to be executed prior to the arrival of
the interrupt signal.

To accomplish all this, the Model 100 incorporates:

» a CPU designed to be able to respond to several inter-
rupt signals

® a hardware layout connecting several interrupting
devices to the CPU

s a ROM operating system which provides routines for
the CPU to perform in the event of an interrupt
condition.

The 8085 can accept as many as five separate electrical interrupt
signals from other devices. In that respect it differs from its closest
relatives, the 8080 and the Z80, which each accept only one.

The five interrupt signals to which the 8085 will respond are
shown in table 15.1, This table also depicts the address to which the
8085 transfers control and the interrupt source to which the 8085 is
connected in the Model 100.

Pin 6 of the 8085, the TRAP line, is wired to the power supply (see
figure 16.1). A signal designated LPS is generated when the battery or
external power source drops below 3.7 volts. See chapter 16 for a
discussion of the power supply.

This is not the same as the low battery warning light, which
illuminates much sooner than the LPS signal, namely when the power

Interrupts 241

drops below 4,1 volts. The CPU cannot detect the low battery warning
light.

The internal design of the 8085 is such that the LPS signal causes
what is functionally equivalent to a subroutine cali to 24H. Disassem-
bly of the ROM reveals a jump to F602 at that location. F602 generally
contains a jump to 1431, which in turns results in:

s storage of a few crucial parameters that are used later upon
power-up,

s a powering down of the Model 100 through bit 4 of output
port 178 or 186, the power-control signal.

You could store a different jump at F602 if a different means of
handling low power was desired. Such a handler must end with a jump
to 1431

Pin 7 of the 8085, the RST 7.5 line, is wired to the clock/calendar
chip. A signal designated TP 1s generated approximately once every
four milliseconds. The actual pulse rate is 256 hertz. The 8085 exam-
ines 3CH to determine the next action. The ROM instruction there is
DI (disable interrupts) followed by a jump to 1B32, which is a call to
F5FF. That part of RAM usually contains a RET (return), though you
could store a jump there to a routine to be prompted by the TP signal.
Such a routine must end with a RET instruction.

The return brings control back to the TP-interrupt routine at
1B35, which performs a variety of housekeeping activities and ulti-
mately returns control to the interrupted program.

Note it is possible to reprogram the clock/ calendar chip to gener-
ate the TP signal at rates other than 256 hertz. See chapter 1.

Pin 8 of the 8085, the RST 6.5 line, is wired to the Universal
Asynchronous Receiver/ Transmitter (U ART). A signal designated
DR (Data Ready) is generated when the UART has received a charac-
ter, whether from the RS-232C port or from the phone modem. The
RST 6.5interrupt generates a subroutine call to 34H, which contains a
DI opcode and a jump to 6DAC, which in turn calls FSFC, Usually
F5FC contains a simple return; the routine at 6DAF then retrieves the
received character and places it in a buffer. You could puta subroutine
call or jump at FSFC to handle incoming characters differently.

Pin 9 of the 8085, the RST 5.5 line, is wired to the BCR socket,
The internal design of the 8085 results in what is functionally
equivalent to a subroutine call to 2CH. Disassembly of the ROM at

242 Inside the TRS-80 Modei 100

that location reveals a DI instruction followed by a jump to F5F9.

F5F9 generally contains a simple return, assuming the bar-code
reader driver has not been loaded. The user could put a jump instruc-
tion at F5F9 if different handling of a received BCR signal were
desired; such a handler must again end with a return.

Pin 10 of the 8085, the INTR line, is wired to the Expansion Bus
connector, pin 17. A signal designated INTR (Interrupt) is generated
when that pin is pulled high by a device plugged into that connector.

The response of the 8085 to this interrupt is identical to that of the
8080 and similar to that of the Z80. A Restart subroutine call occurs to
the location jammed onto the address bus by the interrupting device. A
detailed discussion of interrupt jamming is beyond the scope of this
book. For further information, see Larsen, Titus and Titus, 8080/8085
Software Design Book 2, chapters 2 and 3 and Leventhal, 8085 Assem-
bly Language Programming chapter 12,

Interrupt Pricrities

The 8085 is designed with a priority circuit that decides which of
two simultaneous interrupts will determine the interrupt routine to be
followed. The priorities are detailed in table 15.2.

Masking and Disabling of Interrupts

Handling of an interrupt, even if it simply results in a RET
instruction, takes time. Since this interval can throw off time-sensitive
functions, such as cassette I/ O. It is necessary to be able to disable, or
mask, most interrupts. This is accomplished through the EI, DI, RIM,
and SIM instructions.

Asisindicated in table 15.2, the LPS interrupt cannot be masked,
although the other four can be. You can either disable all four through
the DI instruction or enable interrupts through the EI instruction.

In the 8080 and Z80, this reflects the full range of interrupt mask
choices. In the 8085, however, three of the four interrupts (TP, DR,
and BCR) may be individually masked, through the use of the SIM
instruction, see table 13.3,

Masking accomplished by the SIM instruction is cumulative with
that accomplished by the DI instruction. Enabling of, say, the DR
interrupt requires both an EI and the appropriate SIM.

As a result, certain combinations of enabled and disabled inter-
rupts are not possible. For example, no set of instructions can bring

interrupts 243

about an enabled DR interrupt and at the same time a disabled INTR
interrupt.

Let’s look at how the ROM routines enable and disable the
various interrupts. Disassembly of the subroutine at 765C reveals:

765C F3 Dl

765D 3E1D MVIAAD {LD A1D)
765F 30 SiM

7660 FB El

At 765D, the accumulator is loaded with 1D, whichis 00011101 in
binary. Bits 4, 3, 2, and 0 are on. The next instruction, SIM, loads the
contents of the accumulator into the interrupt mask. It is important
that bit 6 be off, so that this execution of the SIM instruction will leave
the cassette output (SOD) unchanged. Because bit 5 is on, the TP
interrupt, if pending, is reset.

Because bit 3 is on, the mask values in bits 2, I, and 0 are updated.
The result is that the DR interrupt is enabled, but the TP and BCR
interrupts are disabled.

Strictly speaking, it is not the STM instruction that enables the DR
interrupt; SIM merely sets the stage. It is the FI in the following line
that enables the DR and the INTR interrupts.

Other ROM routines enable different combinations of interrupts,
For example, the routines at 1B3B and 457D enable the DR interrupt
but not the TP or BCR interrupts. They do not reset the TP request.
The routine at 6CE4 resets the TP request and enables the DR and TP
interrupts but not the BCR interrupt. The routines at 4584, 6D69,
71F6,726D,73EA, and 743E enable the DR and TP interrupts but not
the BCR interrupt,

When an interrupt is handled by the 8085, all other interrupts are
disabled, just as if a DI instruction had been executed. As a result, no
other interrupt, whether higher or lower in priority, is handled. You
should reenable interrupts somewhere in the interrupt-handling rou-
tine. This is usually done just before the final RET instruction. The
actual reenabling occurs after the completion of execution of the
instruction immediately following the EI. If the 8085 had been

designed so that reenabling occurred with the El instruction itself, the

244 Inside the TRS-80 Modei 100

presence of any pending interrupts would take up too much space in
the stack area.

Radio Shack Model I and 111 programmers know that disabling
of interrupts using CMD “T” interfered with system timekeeping. No
such problem exists within the Model 100, as time is kept by a clock/-
calendar chip whose function is unaffected by CPU status and which
continues to function after the Model 100 is turned off.

Masking of interrupts is used to great advantage in Model 100
BASIC. The commands ON COM GOSUB and ON MDM GOSUB
are driven directly by the DR interrupt and are masked by COM STOP
and MDM STOP.

Similarly, the commands ON KEY GOSUB and ON TIMES
GOSUB are driven by the TP interrupt and masked by KEY STOP and
TIMES STOP.

Uses for the RIM Instruction

The RIM instruction is used for cassette input (see chapter 12).
This is, in fact, the only purpose to which it is put by the Model 100
ROM. However, RIM can also be used to read the mask status of
certain interrupts.

Suppose you desired to change only one bit of the interrupt mask
— for instance to enable, the DR interrupt while leaving unchanged
the masked or unmasked status of the TP and BCR interrupts. This
could be accomplished by:

RIM

ANL 05 (AND A,05) ; trim bits 1 and 3-7
ORI 08 (OR A,08) ; turn on bit 3

SiM

This routine’s RIM instruction reads the present mask status of
the TP and BCR interrupts (bits 0 and 2 of the interrupt mask). It then
turns off bits I and 6 (through the AND instruction) to enable the DR
interrupt. To leave the SOD signal undisturbed, it turns on bit 3 to
allow updating of the interrupt mask and updates the mask with the
SIM instruction.

Suppose you wished to poll the UART DR line, rather than
service it through the interrupt routine at FSFC. To 8080 and Z&0

Interrupts 245

programmers this would appear to be impossible in the Model 100 asa
hardware matter, since the UART DR line does not go to any 1/ O port
circuitry (such as the P10) but instead goes only to CPU pin 8, which is
an interrupt pin.

The 8085 RIM instruction, however, allows such polling. As
shown in table 15.4, after a RIM, bits 4, 5, and 6 of the accumulator
indicate whether BCR, DR, and TP interrupts, respectively, are
pending.

Table 15.1. Types of Model 100 interrupts

CF_’U 8085 M 100 Jump

Pin Designation| Designation Address] Source

6 TRAP LPS 24H Power supply

7 RST 7.5 TP 3CH Clock/calendar chip

8 RST 6.5 DR 34H UART

9 RST 5.5 BCR 2CH Bar-code reader

10 INTR INTR varies Expansion bus
Table 15.2. Interrupt priority and masking

Priority| Signal How Masked

1 L.ow power signal Nonmaskable

2 Timing pulse Pl or SIM bit 2

3 Pata ready Df or SIM bit 1

4 Bar code reader Dior SIMbito

5 Expansion bus S}

Table 15.3. Set interrupt mask (SIM) configuration

Bt 8085 Function Model 100 Use

0 RST 5.5 mask Ignore BCR interrupts

1 RST 6.5 mask lgnore UART DR interrupts

2 RST 7.5 mask lgnore 256-Hz interrupts

3 mask set enable Mask set enable

4 reset 7.5 interrupt Reset 256-Hz interrupt

5 not used Not used

6 S0D set enable Allow updating of cassette
output flip-flop

7 50D Data for cassette output

246 Inside the TRS-80 Model 100

Table 15.4. Read interrupt mask (RIM) configuration

Bit 8085 Function Model 100 Use

0 RST 5.5 enabled BCR interrupt enabled

1 RST 6.5 enabled UART DR interrupt enabled
2 RST 7.5 enabled 256-Hz interrupt enabled

3 |E status tIE status .

4 RST 5.5 pending BCR interrupt pending

5 RST 6.5 pending UART data ready

6 RST 7.5 pending 256-Hz pulse pending

7 SID Cassette data in

16

The Power Supply

The Model 100 is designed to draw its power from four AA cells or
from an AC adapter (catalog number 26-3804). Main power is con-
trolled by the ON/OFF switch SW-5 on the right side of the unit.

With no peripherals attached and no sound being emitted from
the beeper, the Model 100 draws about 350 milliwatts. Radio Shack
maintains that under full load conditions it may draw as much as 1 100
milliwatts, although this author has never seen it draw more than
about 975 milliwatts,

The actual current drain at a given instant is a function not only of
the internal load but also of the voltage supplied. This is because the
Model 100 contains a DC-to-DC convertor which creates all needed
voltages from whatever DC level is supplied. The convertor requires a

247

248 Inside the TR$-80 Model 100

The Power Supply 249

certain amount of source power (source voltage multiplied by source
current), so that if the DC source is of a lower voltage, the convertor
makes up for it by drawing more current, Itis able to do this with input
voltages ranging from 7 volts (from the AC adapter) to as lttle as 3.7
voits (from batteries that have run down almost to the point of prompt-
ing a CPU-induced power-down).

RIG7
atK
S

|

l

1

25C26031E)

The DC-to-DC Convertor

3

The most complicated part of the Model 100 power supply is the
DC-DC convertor, shown in the upper right corner of figure 16.1.

Transformer OT2, on the right, is used to provide the various
voltages. The designers of the Model 100 took advantage of the fact
that transformers are more efficient at higher frequencies; transistors
T21 and T22 provide an alternating current of 100 kilohertz to the =y
primary winding, This is substantially higher than the 60 hertz alternat- ' . 3 5a
ing current used in the transformer of the AC adapter. . gt 1€

The currents from the center-tapped secondary winding are recti- = | 2
fied, filtered, and regulated to produce the various voltages required in
the computer. Minus 5 volts, designated VEE, is provided for the
RS-232C driver, for the various operational amplifiers in the cassette >
and modem circuits, and for the liquid crystal display. Plus 5 volts, . I]

GoatuF
V¥
Ri109
56K

RItE “LF
P T_.‘B‘j
RI0S

2 TKF

|
?

SSP3220¢
aq
zj
+
~r

SWS

designated VB and backed up by a nickel-cadmium (nicad) cell, is
presented for the RAM memory and clock/calendar chip. Plus 5 volts,
designated VDD, is provided for everything else in the computer.

182476

O

Memory Power

TW

S.8-22BP-03
| F l
%%27

Memory protection is provided by a nicad cell rated 3.6 volts at 50
milliampere-hours, The cell, shown in figure 16.2, appears in the
schematic as 3-51FT and bears reference number P-36 in the service
manual. Since the rated protection time for a 32K machine is eight
days, this means that the 32K of RAM together with the clock/ca-

lendar chip draw something less than 0.25 microamperes.

If a nicad is repeatedly discharged only halfway and then
recharged, it will lose the second half of its capacity. Thus, most nicads
should always be discharged fully before recharging. Nicads are known
as discharge memory devices due to their propensity to lose the unused
portion of their capacity when they are not discharged completely
before recharging.

SHIELL P_ATE

|

I

l

|

|

|

|

]

.

H
oot
Jv tw
CrC
To,.?

'._.._
|

SNR-7DIBL
Leo

2
3
| ONR-
4y 2 -‘ T
<&
Figure 16.1. Power supply and reset circuit

| E—
| I

LFICOXED

YFRLOCGCOD212!}

CNI
ADAPTCR
JACK

tHEC 342 -01 - 0101

The Power Supply 251

250 Inside the TRS-80 Model 100

1N2am 19521 pue Arddas 1omog

("ju02) 1 g} ainbiy

£092oz2
Q21 N
- 521y
092352
hw. 21
MO
2614
Age AQS
u.f:uQH u.._/_b\
vl G627
1_.! ALE ﬁ
aa,, FCiy
g
LY _.—n.
2:0851
aza
30 vay L31c09205e
(aGel vl £l
904 - -1
_ * A
e _ Elgley+] Doy
LR | __m
A% 8, f 315092352
370 e
v | v
o | 7 40 22; 51 muwmt\ x,nﬁ
) { g, i weeis2l ey e ae
" | e i a0 WL
[| CEREE 2)
150 (3E08ZI5T
S !
AES], aG |, # A
MRS S Puoezd wezl wouel ooz i .
posTy Loy 0%k ookuzmw mv e e
(A%-1 .ﬁ |
338 g “n mr \m'
Hosr
2ed fowm_mn“ ¥eZoHL sriivsz
Zi0 Bl1
a3l
9.025 Bole
879 P42
1noaro 1asa1 pue Ajddns zamog {fjuoo) L 9 aunbi4d
v
zh AT e %oo.n_fH e neg unooogk
T 082 “||A- 8672 H 39k 162
g £
135 ONS & . Sod
N-— %3 +
]’ 1353
Qaa 100¢ -5
1 2HL <«
Ciow ! !
92 W WG
ﬂll!i]t[Sviy 3 2vly nzie
5 ok #0088 rds
<l i e i 1y MS
L3539 L3s3y
) vMS
o _ 6932 920352
{1 HG1 3 G211
£092352 Obd
Wi o4 3:0¢5!1
T 08
6. LOIEf 9028
ple3] HEE 210
S84 984
nEs I 0—&
28d
- L3532 - ANty T
. L2228 Wi
LSH wvy ——e—— Wid g 528]
8§

252 inside the TRS-80 Model 4100

in the Model {00, however, the nicad is recharging whenever the
four AA cells are in place and the AC adapter is connected. The enly
time the nicad discharges is during the interval when the “low battery™
light comes on and when fresh batteries are inserted. Therefore, always
keep a spare set of AA batteries on hand to be installed as soon as the
LOW BATTERY light comes on.

Before servicing the computer and during installation of expan-
sion RAM modules, you must remove all sources of power from the
circuit board. Because the nicad is soldered in place and cannot easily
be removed, a switch SW3 is provided to disconnect the nicad. This
double-pole single-throw slide switch labeled “memory power™ is
located on the bottom of the computer, Turning it off for more thana
few seconds results in loss of all data in RAM and loss of proper
clock/calendar timekeeping,

It is hard to imagine any reason to turn off memory protection
other than for servicing the computer. If the computer is going to be
stored for a considerable length of time, it is a good practice to remove
the AA cells as a precaution against leakage. In any event you should
back up all important files on tape, since you cannot rely on the nicad
lasting more than a few days.

An extended storage period provides the ideal opportunity to
discharge the nicad fully so as to restore its full capacity. To do so, leave
the memory power switch on.

Low-Power Signals

The power supply includes circuitry to warn both you and the
CPU of impending battery loss. A voliage divider, located at the upper
center of figure 16.1 and composed of THI, R144, R108, R105, and
R116, yields voltages calculated to trigger the “low battery” light-
emitting diode through trensistors T16 and T17. The voltage divider
also triggers LPS, the low power signal, through T14 and T15.

The connection between the “low battery” transistors and the
LED is rather circuitous. The transistors drive T19, which is wired to
CNB8 on the main printed circuit board. A two-wire cable is plugged
into CN& whose other end is soldered to location CN3 on the LCD
panel, which is in turn wired to the LED itself, designated P-24.

The Power Supply 253

The divider is set up so that as the supply voltage falls, the LED
illuminates first (at about 4.1 volts). Later LPS is activated (when the
supply has fallen to about 3.7 volts). There is no connection from the
LED circuit to the CPU. The LPS signal is the first clue the CPU has
that the supply voltage is falling.

Since the switching thresholds of the transistors are affected by
temperature, thermistor THI1 is provided to improve consistency of
circuit response over a range of temperatures.

Whenever power drops far enough to activate the LPS transistors
(and this includes simply turning off the main power switch SW-3),
LPS goes to two places. It appears at bit 7 of input port D8 as a logic
zero {changed from the usual logic one) and also activates the TRAP
interrupt line of the 8085 CPU.

The TRAP interrupt, which cannot be masked or disabled, dis-
ables all other interrupts and causes a subroutine cali to 24H. This
results in an orderly termination of calculations in progress. The
computer then turns itself off by turning on bit 4 of output port BA.
The resulting signal, called PCS (power control signal) toggles flip-flop
M28, which appears at the bottom of figure 16.1. An output of the
flip-flop inhibits the feedback which usually sustains the convertor
oscillator, cutting off energy to the VEE and VDD lines. As a result, all
activity stops except clock/ calendar timekeeping and RAM data pres-
ervation. The ROM code for the power down is located at 1431
through 1458,

Reset Circuitry

When power is turned on, circuitry at the lower left of figure 16.1
provides a RESET-NOT signal to initialize the CPU, the PCS circui-
try, the LCD, and flip-flop M14. The CPU provides RESET* to
initialize the modem, the UART, the PIO, flip-flop M36, and any
device plugged into the Expansion Bus. The reset circuitry also pro-
vides 2 RAM RST signal, which disables the RAM chips to protect
their contents during power-down. This signal is also sent to the
Expansion Bus to protect any RAM that is installed there. The single-
pole single-throw RESET button SW-4 at the rear of the computer
provides the same reset signals as does the on/ off switch.

254 Inside the TRS-80 Model 100

The Power Supply 255

Powering Up The CPU

The 8085 CPU begins program execution at memory location
0000. The ROM code at that location jumps to 7D33, where, after a
100-millisecond delay, the PIO is initialized. (See chapter 5 for a
discussion of the P10.) If CTRL-BREAK was pressed during the reset : /
or power-on, if the amount of installed RAM has changed, or if the
RAM file directory entry for BASIC at F5F0 is missing, a “cold start”
is performed complete with a purging of all RAM files.

Assuming the RAM directory has been found to be in order and

6VDC
TO
MODEL
00

v\' N

no new RAM has been installed, the routine checks to see if it can lfl—J o

reload the pointers that were in effect when the power-down occurred. T ?_:

The stack pointer, for instance, is retrieved from FABE. =0
_ 1L

The AC Adapter ; * AN *

The AC adapter, catalog number 26-3804, is not UL approved.
However, it is similar in design and construction to many UlL-approved
adapters, so there is no safety risk. Inside the adapter is a transformer,
rectifier, and capacitor, as shown in figure 16.2.

The transformer has a 120-volt primary winding and a nominal
5.6 volt secondary winding rated at 400 milliamperes. The alternating
current output is connected to a one-piece full-wave rectifier, which
produces direct current, but with a substantial AC ripple. The DC
current is smoothed by a 2200-microfarad, 10-volt electrolytic capaci-
tor and provided to the Model 100 by a two-meter cable. The white-
striped lead of the cable is the negative wire, which connects to the
inner conductor of the round plug.

The plug is a 5.5-millimeter barrel plug, equivalent to Radio
Shack catalog number 274-1551. The plug connects with the DC6V
jack on the right side of the computer, internally designated CN9.
Ferrite beads are installed on the internal wiring to CN9 to aid in
suppression of radio frequency energy which might otherwise be
transmitted into the house wiring through the AC adapter or into the
air by the adapter cord acting as an antenna. Though the adapter is
rated 6 volts at 400 milliamperes, the actual no-load output is about 8
volts. This drops to about 7 volts under a typical Model 100 load of 50
milliamperes or to about 6.5 volts under a heavy load of 130
milliamperes.

i

}

Figure 16.2. AC adapter

..\
)
—

120VAC
OUTLET

T0
AC

256 Inside the TRS-80 Model 100

Since most AC adapters are composed simply of a transformer
and rectifier without a capacitor, they do not perform any filtering.
This explains why the Model 100 user’s manual warns against using
any adapter other than the Radio Shack adapter.

You could use a non-Radio Shack AC adapter which provides
around 6 volts or so at 180 milliamperes, as long as capacitors are
included which total 2200 microfarads. These may be spliced into the
cord running from the adapter to the computer.

Alternative Power Supply

1n powering the Model 100, you are not limited simply to AA cells
and the AC adapter. Any ripple-free source of DC between 3.8 and 7
volts and capable of providing at least 1.1 watts can be plugged into the
DC6V jack using a barrel plug (Radio Shack catalog number 274-
1551). Sensible choices include a six-volt lantern battery with screw
terminals or three photocell arrays wired in parallel. Just remember
that the negative lead must be wired to the center terminal of the barrel

plag.

17

Expansions

This chapter discusses a number of topics related to expansion of
the Model 100. Hardware modifications or expansions would be
required to implement each of these expansions.

The Bar-Code Reader and CRT

The manner in which BASIC handles the opening of devices
makes it clear that device specifications WAND and CRT will be
available for the Model 100. When an OPEN is performed in BASIC, a
file control block is set up with pointers to addresses that BASIC uses
in performing output (PUT), input (GET), and file CLOSE, as well as
any special handling required by that device. The routine addresses are
stored in ROM in various locations and are listed in table 17.1,

257

258 Inside the TRS-80 Modet 100

Some devices cannot be used for certain directions of data flow.
For example, input cannot be performed from the LCD,CRT,or LPT.
Note that these table positions are empty.

In the case of the WAND and CRT device names, the ROM
entries refer to RAM addresses that are shown here in table 17.1 in
parentheses. For example, if a CRT OPEN is attempted, BASIC jumps
to the address stored in FB1A.

The original ROM loads these RAM locations with a jump that
results in a return to BASIC with a ?FC error. When expansion
software is loaded, these locations in RAM are changed to jump
addresses for the appropriate handlers.

Table 17.1. Subroutine addresses for BASIC device handling

Device OPEN CLOSE PUT GET Special
LCD: 14D8 4058 14E5

CRT: {FB1A) 4D59 (FB1E)

CAS: 1689 16AD 16C7 16032 1710
COM: 176D 179E 17A8 1780 17CA
WAND: (FB20) (FB22) 7FC (FB24) (FB26)
LPT: 14D8 4D58 175A 55CD
MDM: 176C 17DB 17A8 17B0O 17CA
RAM: 1506 158D 15AC 15C4 1618

Expansions 259

The addresses in table 17.1 may be printed out by means of the
BASIC program listed below.

5 OPEN"device" FOROUTPUTAS1

10 HX$="0123456789ABCDEF":AD=20721:FOR D=0TO 7:
GOSUB 1000: TA=PEEK{A)+256"PEEK{A+1):

FOR IT=TA TO TA+8 STEP 2:A=IT:GOSUB2000:

NEXT IT:PRINT#1,:NEXT D:CLOSEEND

1000 PRINT#1,CHR${PEEK(AD));:AD=AD+1:
IFPEEK(AD)<128 THEN 1000 ELSE PRINT#1 S+ CHRS(9);:
A=20755+(2*(255-PEEK(AD))): AD=AD+1:RETURN

2000 PRINT#1,CHR$(9);:A=A+1:GOSUB 3000:A=A-1:GOSUB3000:RETURN
3000 PRINT#1,MID$(HXS,1+{(PEEK{A)AND240)/16),1};
MID$(HXS,1+(PEEK(A)AND15),1);:RETURN

Unused Pins

Two pins inthe Model 100 are available for hobby usage. The first
is aninput port signal at M23, pin 2. This pin, presently wired onlyto a
pullup resistor, controls bit 6 of input port 208. If a switch were
connected from this pin to ground, software could determine the
position of the switch by ANDing the value at port 208 with 64. If the
result is zero, then the switch is closed.

The other unused pinis M6, pin 14, M16 is the integrated circuit
that controls I/ O ports 128 to 255. Pin 14 is usually at 5 volts, but drops
to 0 whenever 1/0 ports 144 to 159 are accessed by the CPU. This
signal could be fed to other CMOS integrated circuits or, with suitable
buffering, could be used to control devices outside of the Model 100,

DISK INPUT/OUTPUT

The Model 100 designers have planned for disk or other bulk
storage. The BASIC key word table contains DSKI$ and DSKO$;
these words are handled at 5073 and 5071, respectively. Those ROM
addresses contain references to RAM vectors at FB2E and FB30;
which currently point to a ROM routine that yieldsa 7FC error. When
DSKI$ and DSKOS are implemented, these values change.

ROM ROUTINES FOR BULK DATA TRANSFER

The routine at 7304 through 7326 makes reference to 1/ O ports 70
through 73, which are not presently inplemented, but could easily be
wired up at the expansion connector. This routine resembles a disk
input routine, as it loads three numbers to output ports (drive number,
track, and sector) and retrieves a specified number of bytes from an
input port,

The routine at 767D through 770A appears to be a bulk output
routine. It refers to ports 80, 81, 82, and 83, which are not presently
included in hardware but which could easily be added at the expansion
connector.

RECORD 1/0

It appears that some sort of record I/O is being planned for the
Model 100. Two variables, LOF and LOC, are provided for. In most

260 Inside the TRS-80 Mode! 100

BASIC versions, LOF carries the number of logical records in a file,
while LOC carries the present logical record number within an open
file, a portion of which has already been input.

The RAM vector for LOF is located at FB28, while the vector for
LOC is located at FB2A.

LISTING FILES TO THE PRINTER

The command LFILES is provided for, which you would expect
to cause a listing of files at the printer. The RAM vector is at FB2C.

FUNCTION KEYS IN TELCOM TERM MODE

The F6é and F7 function keys in Term mode presently do nothing.
This is because the RAM vectors at FBOC and FBOE simply point to
RETurns. If you want to put one to use, just place something else in the
RAM vector location. As a demonstration, in BASIC type;

POKE 64268,41:POKE 64269,66

Whenever the F6 key is pressed, the computer jumps to the
routine at the location 41+256*66, which is the BEEP routine.

Many other RAM vectors exist. They are located from FADA to
FB39 and are referred to by RST 7’s. The byte following the RST 7 is
used as an index into the table starting at FADA. Thus, RST 7
followed by 4E (which is what happens at the LOF routine at 506B)
causes a reference to FADA+4E, or FB28. The address at FB28 and
FB29 is jumped to by the RST 7 routine.

During a cold start, ROM loads the lower portion (up to FB12) of
the FADA table with 7FF3, which isa RET. ROM loads the rest of the
table (up to FB38) with 08 DB, which was chosen because it returns to
BASIC with an error 5, 7FC.

Understanding the Option ROM Socket

Selection of the option ROM is accomplished by turning on bit 0
of output port E8, as shown in Figure 17.1. To do so properly, obtain
the contents of E§, which are stored by ROM at FF45. OR with 01, and
OUT the data to the port.

Expansions 261
= =
o O
1 o
- o
" O
5 1S
¢
T 2 I L
o — O S L |
o |_ w T 2 i
W - >
e N 2
13 P - o5 [P
=« o =<
5=
© L4 @ &
| o m| =1
“°]
=
o) = 2
2 = 5 £
- 1
v b
[<
IG} * =4
-~ llx =
= 2
=
s &
=
: ¢ -
h S N
13 138 g
- 4 =,
=] (TH
llo |]
ICI ‘?I a3
2 1=
& S
| 4 % ©
< T —-|>
| 03
| =<
<l [45] 1
I L —3
| | {
R B |
© =
< S

|
I‘.o*
> |
=z

262 Inside the TRS-80 Model 100

When a cold start takes place, the start routine checks the option
ROM socket to determine the presence of a device (this occurs at
036F).

If location 40H in the option ROM contains 54 and location 41H
contains 43, the ROM is assumed to be installed and functioning. A
flag at F62A indicates whether the option ROM passed the test. The
contents of ROM at 42H to 47H are treated as a filename. They are
loaded into the RAM directory at FOBD through FO9C2, immediately
following SCHEDL. The filetype is specified to be FO (valid entry,
ASCII, machine language, ROM).

EXPANSION BUS SOCKET

The expansion bus is made available in a socket on the underside
of the unit. The socket is a standard forty-pin integrated circuit socket,
so an IC header can be used to make connections. The service manual
states that an optional I/ O control unit and RAM file unit can be
connected to the expansion socket. As discussed previously, there is
room for growth in the RAM vectors for DSKIS$ and DSKO$ and in
the ROM routines to nonexistent IO ports between 70 and 8F.

The signals at the expansion socket are listed in table 17.2and are

discussed in turn.

Table 17.2. Expansion socket signals

Expansions 263

Pin Name Input or Quiput
1 vbD output

2 GND cutput

3 ADO input/output
4 AD2Z input/output
5 AD4 input/output
6 AD6 input/output
7 A8 output

8 A10 output

9 Al2 output

10 Al4 output

11 GND output

12 RD” output

13 10/M* cutput

14 ALE" output

15 CLK output

Continued on tollowing page

16 A* output

17 INTR input

18 GND output

18 RAM RST output

20 NC

21 NC

22 NC

23 GND

24 INTA output

25 RESET” output

26 Yo* output

27 51 output

28 S0 output

29 WH* output

30 GND output

31 A1b output

32 A13 output

33 Al output

34 A9 output

35 AD7 input/output
36 AD5 input/output
37 AD3 input/output
38 ADt input/output
39 GND output

40 Vbbb output

_ Allbut a few of the signals at the expansion connector are derived
directly from the CPU, with only the usual buffering.

MEMORY ACCESS AT THE EXPANSION CONNECTOR

Since the Model 100 already contains devices which respond to
every possible memory address, from 0000 to FFFF, the addition of a
memory device via the expansion connector faces difficulties. As a
result, unless you wish to cut traces on the printed circuit board, any
addition of external memory could most easily be accomplished in port
space rather than address space.

Nonetheless, memory addition is possible though difficult. Per-
haps the easiest way would be to take advantage of the fact that the
ROM from 0000 to 7FFF is already bank-switched. One could add
circuitry putting 32K of RAM in 0000 to 7FFF whenever pin 27 (chip
select not) of the option ROM socket was low. It would be necessary to
copy into RAM those ROM routines that were needed for continued
program execution.

264 Inside the TRS-80 Modet 100 Expansions 265

It would appear the Model 100 designers have some sort of RAM
expansion in mind since two reset signals are provided at the connector
— the usual RESET* signal (pin 25) and also the RAM RST signal
(pin 19). The service manual states the RAM RST signal is to be used
with external CMOS RAM.

Address Decoding ' l

All computers use signals like RD, WR, 10/M, address, and data
for memory access. Memory address decoding in the Model 100 differs
in one important respect, however, from that in most computers.
Because the 8085 uses the same eight wires for data transfer and for
address lines 0 through 7, any memory device added at the expansion
connector requires address decoding circuitry which takes into account
the ALE (address latch enable) signal present at pin 14. This signal
determines whether the contents of the eight lines are to be interpreted

M W 0+ MmN - O

INPUT
PORT

wh
wm

4
13
4
2
15
5
8
1
zsi}

by the other devices as address or data. £
Other input/ output status and control signals have been brought ' «
out to the connector. S0 and S1 are provided so that advance warning > 4_‘3 § o)
may be given to slow peripherals if a read or write is imminent. The * = ?
signal designated A* is a combined RD* and WR* signal. y ©

Adding Ports to the Model 100

0.047uF
3
7
16
8
5
15
2
9
|
+5Y |7

38
3
26
12
2

Port space is a much more promising area of expansion than -
address space. For one thing, the port space is not yet filled; this is
shown in figure 5.3. Also, because the port addresses are available on .
address lines 8 to 15, there is no need to worry about the ALE signal. 218

Finally, you can take advantage of circuitry in the Model 100 to
decode port addresses. The port-select signal for ports 80 through 8F is
already present at the connector — it is YO* at pin 26. In addition, the
port-select signal for ports 90 through 9F is inside the Model 100

waiting to be used. It can be found at pin 14 of M16.

9V

35
5
36
5
3T
4

EXPANSION
CONNECTOR

Parallel Port Input

A typical general-purpose parallel input circuit is shown in figure
17.2. Using the configuration shown in the figure, the positions of the
eight switches are available to the CPU at any input port in the range of
80 to BF.

Figure 17.2. Parallel port input

266 Inside the TRS-80 Model 100 Expansions 267

Parallel Port Qutput

Parallel output is most easily accomplished using flip-flops, as
shown infigure 17.3. An cutput to any port in the range of 80 to 8F will : -
load the byte in the accumulator into the flip-flops and will turn on the H
LEDs. A relay is shown which is turned on if the corresponding bit (bit -

0) is 2 one. z . 5

L
2N2222A

Interrupts at the Connector

The signals INTR and INTA, used for interrupt-driven program-
ming, are available at the connector. If a device at the connector asserts
INTR by pulling it up to +5 volts, the CPU responds to the interrupt.
The response can be directed by jamming an interrupt vector address
onto the address/data lines. This is not a technique for the idle experi-
menter. For more information, refer to the references cited in chapter
15 on interrupts.

THE TELEPHONE RING PULSE INPUT

One intriguing circuit is that connected to pin 8 of the phone jack
CN4, labeled ring pulse. This pin, if grounded, turns off bit 5 of input
port D8. The easiest way to ground it is to short it to pin 2 of that
connector. A simple hardware device, like that shown in Figure 17.4,
can be connected to the direct-connect phone cable (catalog number

26-1410) and to the Model 100. _ a el L N @ S o
THEQORY OF OPERATION £ Jé

When the phone line is quiet, direct current (DC) is present on the
line without added ring-detect circuitry from the line by blocking the
DC.

When the central office sends the ring signal, the capacitor couples
the alternating current to diodes D1 and D2 which charges capacitor
C1 to about 200 volts. This voltage, limited by resistor R2, allows a
flow of about 20 milliamperes through the LED of optoisolator IC1,
which turns on its phototransistor. Thus, during the ring pulse, Model
100 phone jack pin 8 is grounded through ICI to phone jack pin 2.

EXPANSION
CONNECTOR

Figure 17.3. Paralle! port output

268 Inside the TRS-80 Model 100

The central office ring pulses occur about every six seconds and
last about a second. When each pulse has ceased, capacitor Cl dis-
charges quickly through the LED, turning off the LED and allowing
the voltage at phone jack pin 8 to float back to its high level.

A parts list for a ring/detect circuit is provided in table 17.3. Any
construction technique can be used. Lead lengths and placement are
not critical, except that the wiring of pins 5 and 6 of the optoisolator
should be carefully segregated from everything else. This author wired
the circuit directly to the 8-pin plug of the modem cord. It would also
be possible to equip the circuit with male and female 8-pin connectors
to connect the computer and the modem cord. Testing the circuit is
easy using the following simple BASIC program:

1 IF (INP(208) and 32)=0 THEN BEEP
2 GOTO 1

When the phone rings, the Model 100 beeps, It is an easy matter to
write software in BASIC or machine language to take advantage of the
RP signal. First, the CPU selects the modem mode through bit 3 of
output port BA. Then it checks that the switches are set to the DIR and
ANS positions through bits 4 and 5 of input port BB. After setting the
baud rate and word length through a BASICOPEN MDM:; command
or through the machine-language routines given in chapter 8, the CPU
monitors input port D8 and answers the incoming call. This is done by
way of bit 7 of output port BA when bit 5 changes to zero.

The program then interacts with the caller. When the caller hangs
up, the incoming carrier would be lost. This would be signaled to the
CPU at bit 0 of input port D8, and the CPU disconnects the call.

Figure 17.3. Schematic of a ring/detect circuit

Design Catalog No. Price Description

G1,c2 272-1053 .59 0.1 uf 250V capacitor

Dt,D2 276-1103 2/.69 1A 400V diode

IC1 276-1654 5/1.98 optoisolator {any of the five types
will do)

R1 271-027 .19 2.2K resistor

R2 271-034 19 10K resistor

Expansions 269

(8)
{2)

R
AN

L 4
1~ ClI
&

DI
¢

W

RI

: N
x 0}
%) ~

Figure 17.4. Ring/detect circuit

18

The Remainder of ROM

Although a number of published ROM subroutines have been
discussed in earlier chapters, several routines did not fit into those
categories. These are discussed here. In addition, other aspects of the
ROM operating system are described in this chapter.

Published ROM Initialization Routines

MENU, called at 5797, is not really a subroutine, but rather an
entry point for a fundamental ROM process from which there is no
return. It goes to the main menu. Jumping to it is preferable to calling
it.

The routine IOINIT, start address 6CEQ, initializes values at the
1/0 ports and loads a disk bootstrap loader if a disk is attached. After

271

272 Inside the TR5-80 Model 100

the loader is placed at EQ00 to EOFF, the routine jumps to EG00.
Assuming no disk is installed, the routine returns to the calling
program.

The routine INITIO, called at 6CD6, zeros memory from FF40 to
FEFD. This initializes a number of flags, such as XON/XOFF status,
SOUND, baud rate, and the like. Afterwards the routine performs as
IOINIT does. Neither of these initialization routines destroys user
files.

PUBLISHED RAM FILE-HANDLING ROUTINES

User files reside in RAM starting at the lowest installed RAM
address, with BA files at the bottom, followed by DO files and CO files.
The directory is located in high memory from F962 to FA74. There is
room to store sixteen filenames, with eleven bytes of information each.
The format of the filename information is given in table 18.1.

Table 18.1. RAM Directory Format

Byle Description

-0 Directory flag”
1-2 File start address
3-10 Eight-byte file name

Table 18.2. RAM directory flag information
Bit Description

0 if a killed file

1if a DO file

1if a CO file

1 if located in ROM

1 for invisible file

-1 Reserved

Internal use only

O WO

Notice that no entry exists for filesize. To determine filesize, either
of two technigues may be used. By comparing the various start
addresses, one can determine the next file’s starting address. The two
start addresses may simply be subtracted.

* The directory fiag contains the information described in table 18.2.

The Remainder of ROM 273

However, the filenames in the directory ar¢ not in order by start
address, so one must search the entire directory to find the next file up.
The ending address of the top file is stored at FBB2+.

Another way to determine file size is by examining the files
themselves, since the file itself always contains enough information to
determine its size. With BA and DO files, you must scan the file,
beginning at the start address, to locate the end-of-file marker. For DO
files, the EOF character is 26H. For BA files, it is a three character
sequence, 00H.

For CO files, there is no end-of-file character as such, but the
length of the file is determined by adding the value of the third byte to
the product of 256 times the fourth byte plus six.

Suzuki and Hayash

Sooner or later you will stumble across the names Suzuki and
Hayashi in the directory. Hayashi is the PASTE buffer. Suzuki is the
location of the BASIC program, if any, that has not vet been SAVE'd
and therefore does not have a name, (It is the file you sometimes see
listed as BASIC*.) Sometimes you select BASIC from the main menu
and find that some lines are still present [rom the last time you were in
BASIC; these lines were hiding in Suzuki.

Suzuki and Hayashi take up memory, of course, like any other
file. 1t can be emptied by entering BASIC and typing NEW.

DO Files

A DO file’s first character is that which would be returned if you
accessed it with TEXT or with BASIC’s OPEN and INPUT state-
ments. The file ends with the 26H described above.

BA File Format

A BA file in RAM is set up as a sequence of lines, cach with the
following form:

2 bytes Hex address of line number to follow

2 bytes Current line number (hex)
e numerous bytes Program line in tokenized form
1 byte Nuli (00H)

274 Inside the TRS-80 Model 100

The file ends with two more nulls (00H), making the last three
characters nulls.

CO File Format

The format of a CO file is as follows:

2 bytes Address to load file to
2 bytes Number of bytes to load {six fewer than the size
of the RAM file, because of these six address

bytes)
2 bytes Transfer (start) address
* many
bytes Contents of file

ACCESSING FILES

BASIC’s PEEK statement can be used to examine file contents
without the danger of altering the file. The use of POKEs with files,
however, is to be discouraged unless you know precisely what you are
doing. If you must POKE, keep the following in mind.

* POKE only within the files, not elsewhere in RAM. In
particular, do not POKE to addresses at or above 62960
(F5FO0).

+ If you create an end-of-file (EOF)} marker within a DO
file, you must delete any characters from there up to the
beginning of the next file. Use MASDEL, described
below.

s [f within a BA file, you tamper with any of the file format
addresses described above in memory, such as the
BASIC address of the following line number, the pro-
gram will no longer function properly.

Published ROM Calls for Manipulating RAM Files

Most of the following routines can be used only to manipulate DO
files in RAM.

The routine MAKTXT, called at 220F, creates a DO file in the
RAM directory with the name specified in the buffer at FC93 through
FC98. If the file already exists, the routine returns with the carry flag
set.

The Remainder of ROM 275

Upon exiting the routine, the HL register points to the TOP
address of the new file (the address at which new characters would be
added), and DE points to the address of the directory file flag, located
somewhere in the directory starting at ¥962,

The routine CHKDC, called at SAA9, examines the directory to
determine if a specified DO filename is present in the directory as a
valid file. Prior to the call, DE should point to the first in a series of
memory addresses (RAM or ROM) containing a filename in ASCII
followed by a null.

Upon return the Z flag is set if no such file was found. If the file
was found, HL points to the start, or lowest, address of the file.

The routine GTXTTB, called at SAE3, finds the TOP address of
the file assuming its location in the directory is known. If you provide
the address of the directory entry in HL, it returns the TOP address of
the file.

The routine KILASC, called at | FBE, kills a DO file. Prior to the
call, DE must be set to the starting address of the file, and HL must be
set to the address of the directory entry. Everything above it in user
memory (CO files and other DO files) is moved down to fill in the
space.

The routine INSCHR, called at 6B61, inserts one character in a
DO file. Priorto the call, HL points to the address at which toinsert the
character, and A contains the character to be inserted. Everything
above in user area (all CO files and some DO files) is moved up one
position.

If there is no more room in RAM, the routine returns with the
carry flag set.

The routine MAKHOL, called at 6B6D, inserts a specified
number of spaces in a file. Everything is moved up in memory to
accommodate the spaces. These spaces may later be changed as
desired. Prior to the call, BC must contain the number of spaces to be
inserted, and HIL, must point to the address at which to insert the
spaces. HL and BC are preserved, which is handy. If there was insuffi-
cient room in RAM, the routine returns with the carry flag set.

The routine MASDEL, called at 6B9F, deletes a specified number
of characters from a file. Prior to the cali, BC must contain the number

276 Inside the TRS-80 Model 100

of characters to be deleted, and HL should point to the address at
which to begin deleting. HI. and BC are preserved.

Biock Moves

The Model 100 ROM contains a number of block move routines.
In each case, a source address is loaded to a register pair, a destination
address is loaded to another register pair, and the number of bytes to be
transfered is loaded to another register (for a transfer of up to 256
bytes) or to another register pair (for a transfer of up to 65536 bytes).
At this point, the routine can either load and increment or load and
decrement, as shown in table 18.3.

Table $8.3. Block move subroutines

of Bytes Increment or Calt
Source Destination Bytes Decrement Address
BC DE L. Increment 290F
DE HL A Increment 5A62
DE HL B Increment 3469
DE HL B Decrement 3472
HL DE B Increment 2542
HL DE BC Decrement 6BEG
HL DE BC increment 6BDB
ML DE C Decrement 2EE6
HL DE tinog increment 65C3

is loaded

One routine, at 65C3, is different in that it loads until such time as
a null character is encountered in the source location.

Lowercase Conversion

The routine at 0OFES converts lowercase to uppercase. Prior to the
call, HL must point to a character. After the call, the accumulator
contains that character, converted to uppercase.

CONVERTING NUMERICAL HEX TO ASCII

The routine at 1999 converts the numerical hex byte pointed to by
DE to ASCII, with the result in HL. Then DE and HL are incre-
mented. (All the routine does is OR the contents with 30H.} No error
checking is undertaken. The value at DE must bein the range of 0 to 9.

The Remainder of ROM 277

CONVERTING TWO NUMERICAL HEX BYTES TO ASCII

The routine at 1996 causes the previous routine to be executed
twice. This is useful for converting seconds from the clock/calendar.

REGISTER-PAIR COMPARISON

The subroutine called by RST 3(RST 18) compares DE to HL. If
they are equal, the zero flag will be set.

UTILITY FOR COMMAND DECODING

The subroutine at 6CA9 is a useful general-purpose command
decoder. Prior to the call, DE points to a command table containing
four-letter commands and jump addresses. HL points to a command
received as user input. The command is converted to upper case and is
compared one-by-one with the commands in the table. If there is a
match, the routine jumps to the address in the table associated with
that command. If there is no match, the routine returns with the Z flag
set,

The table is composed of one or more command entries, followed
by a null. Each command entry is composed of four letters and a
two-byte jump address.

RAM VARIABLE MAP

A variety of variables are located in high-end RAM. They are
listed in table 18.4. Many of these may be changed by a user program as
needed.

Table 18.4. RAM variables

Initialized
Address Description Where
F5FQ Start of system Q35A
F5F2 SP upon power-down 035C
F5F4+ HIMEM value 035E
F5F6 Power-on hook 0360
F5F9 BCR interrupt hook 0363
FSFC UART DR hook 0366
F5FF TP interrupt hook 0369
FE02 LPS interrupt hook Q36C

Continued on following page

278 Inside the TR5-80 Madet 100

F605 Power-on hook 036F
FBOF Option ROM hook 0379
FB2A Option ROM installed 0394
F62B 20 or 10 pps

F639 Cursor row 03A3
FEB3A LCD cursor column 03A4
F&3B LCD active lines 03A5
F83C LCD active columns 03A6
F&3D Label line flags 03A7
F&48 Beverse video if 1 03B2
FE4E X-pixel set 0388
F64F Y-pixel set 0389
F657 Power-down value Q3C1
F65B-F660 Initial Stat setting 03C5
F674 LPGS printer column 03DE
F&75 Qutput 0=LCD 1=LP 03DF
F&78 Top of available RAM 03E2
F685 Keyboard buffer

F788 POS- cursor position

F789 Key labels

F88C+ Location of PASTE buffer

F923 Seconds— units

Fa24 Seconds— tens

Fo925 Minutes— units

Faz6 Minutes- tens

Fa27 Hours— units

Faz8 Hours— tens

FB29 Day of month-units

FI92A Day of month-tens

FozB Day of week

Fa2C Month

Foz2D Year-units

Fa2e Year-tens

F962-FOBS Directory 6BF1+

FOBA-FAC4 Option ROM or filname

FOC5-FAT74 Directory

FAAC Character recently sent

FAAE Port A8 contents

FACO towest installed RAM

FADA-FB14 RST 38 hooks-all RET

FB16-FB39 RST 38 hooks-all error 5

FBBO+ Top of DO files

rBB2+ Top of CGOQ files

FCis Floating Point Accumulator 1

FCe9 Floating Point Accumulator 2

FCaz2 Maxfiles?

FC83-FC98 Filename

The Remainder of ROM 279

FEOO-FF3F
FF40

FF41

FF42

FF44

FF45
FF8B

LCE memory

Pistant computer sent XOFF
This Model 100 sent XOFF
Is XOFF enabled?

SOUND OFF=1 ON=0

Port E8 contents

Address of baud rate

Continued on following page

Appendix A 281

Appendix A.
Nonprintable Characters and
Mode! 100 Assignments

The following table indicates the meanings that other devices may
give to nonprintable ASCII characters. It also shows what meanmng, if
any, the Model 100 assigns to these characters.

ASCII Model 100
Decimal Meaning Meaning
0 Nuli
1 SOH-Start of Heading
2 STX-Start of Texi
3 ETX-End of Text
4 ECT-End of Transmission
5 ENQ-Enguiry
6 ACK-Acknowledge
7 BEL-Bell produces BEEP
8 BS-Backspace moves cursor one space to left
g HT-horizontal tab moves cursor to next 8th column
10 LF-line feed moves cursor one line down
(no horizontal movement)
11 VT-vertical tab cursor to home
12 FF-form feed clears screen
13 CR-carriage return cursor to teft edge

14 S0O-shift out
15 Si-shift in
16 DLE-data link escape
17 DC1-device control 1 it XON/XOFF enabled, continue
transmission
18 DC2-device control 2
19 DC3-device control 3 if XON/XOFF enabiled, pause in
transmission
20 DC4-device control 4
21 NAK-negative
acknowledge
22 SYN-synchronous idle
23 ETB-end of transmission
block
24 CAN-cancel
25 EM-end of medium
26 SUB-substitute
27 ESC-escape {see table 13.4)

282 Inside the TRS-80 Model 100 | - Appendix B 283

28 FS-file separator Appendix B.
29 GS-group separator
30 RS-record separator ROM Map

¥ US-unit separator

127 DEL-delete same as backspace This map will be of help to those who are disassembling ROM
routines.
Address Functicn
000G hardware reset address
0008 restart 08
o010 restart 10
0018 restart 18-compares HL and DE
0020 restart 20-character o LCD or LPT
0024 low-power signal routine
0028 restart 28-check variable type
oo2cC bar code reader routine
0030 restart 30-sign of flpating point number
0034 UART data ready routine
0038 restart 38-ram hooks
003C clock/calendar pulse routine

0040 to 007F address table for BASIC functions SGN to
MIDS$, keywords of which appear at 01F0 to
G25F

0080 to 018E BASIC command keywords END to NEW, with
address table starting at 0262

018F to 01D5 BASIC function keywords TAB to STEP

D1D6 to C1EF BASIC operator keywaords “+” to "<, with
address table starting at 02F8

01F0 to 025F BASIC function keywords SGN to MID$, with
address table starting at 0040

(0262 to 02E1 address table for BASIC command keywords
END to NEW, located at 0080 to 018E

02EE 10 0318 address table for BASIC operators, used at
10DA

031C t0 0359 BASIC two-character error messages

035A to 03E9 initiatization RAM image loaded to F5F0-F76F

035C initialization value for SP upon power-down

035E initialization value for HIMEM

0360 initialization vaiue for power-on hook

0363 initialization vatue for bar code reader inter-
rupt hook

0366 initialization value for UART data ready inter-
rupt hook

0369 initialization value for clock/calendar interrupt

hook

284 Inside the Model 100

... Appendix B 285

Address
036C

036F
(0394

03A3 to 03A6

03A7
G3B2
03CA1
03Ch
03DE
03D0F
040D
0726
076B
0783
0840

0858
0872
0881
0886
0896
(89F
08DB
08EB
090F
091k
0936
0966
099E
09A0
£oC3
OA2F
0A34
0ABD
0BOF
0B1A
0B4E
0B56
oco
0C45
0C50
0C74
0C99

Function

initiatization value for tow power signal inter-
rupt hook

power-on routine— option ROM testing
initialization value for option ROM presence
flag

initialization values for screen position and
size parameters

initialization value for label line flag
initialization value for reverse video flag
initiatization value for power-down countdown
initialization value for Stat

initialization vaiue for LPOS

initialization value for output flag

prints error message based on A

BASIC command FOR

BASIC command TO

BASIC command STEP

BASIC command dispatcher based on token
inA

sets pointer to BASIC text

BASIC command DEF

BASIC command DEFDBL

BASIC command DEFINT

BASIC command DEFSNG

BASIC command DEFSTR

FC error

convert ASCII decimal to hex in DE
BASIC command RUN

BASIC command GOSUB

BASIC command GOTO

BASIC command RETURN

BASIC command DATA

BASIC command ELSE, REM

BASIC command LET

BASIC command ON

BASIC command ON ERROR

BASIC command RESUME

BASIC command ERROR

BASIC command IF

BASIC command LPRINT

BASIC command PRINT

BASIC command TAB{

BASIC command LINE

BASIC command LINE INPUT

“Redo from start”

BASIC command INPUT#

Address

0CA3
0CDg
0b71
OF47
OF56
OF7E
OFES8
1054
108C
1097
10A2
10AD
10B5
10C8
10CE
1100
110C
112E
1138
1140
11A2
11AA
1284
128B
12CB
12F0
13A5
13DbB
1412
1419
1431
1451
1459
1469
1470
148A
14A8
14AA
1480
14C1

14D2
14D8
14E5
14F2
14FC

Function

BASIC command INPUT

BASIC command READ

BASIC command “Extra ignored”
BASIC function ERR

BASIC function ERL

BASIC function VARPTR

converts LC to UC

BASIC operator NOT

BASIC operator OR

BASIC operator AND

BASIC operator XOR

BASIC operator EQV

BASIC operator IMP

BASIC function LPOS

BASIC function POS

BASIC function INP

BASIC command OUT

convert ASCH to integer

BASIC command LLIST

BASIC command LIST

print from buffer tili zero byte reached
put data in buffer untii zero byte reached
BASIC function PEEK

BASIC command POKE

wait for character from keyboard
paste routine

toggle label line

check keybaord queue for characters
break routine

FOWER routine

power down seguence

POWER OFF

BASIC command POWER CONT

set power down value

print character without expanding ASCII 09
read cassette header and synch byte
motor on

motor off

read a character from cassette

send character to cassette and update
checksum

LCD device control block

LCD file open

LCD file put

CRT device control block

RAM device control block

286 Inside the Model 100

Address Function

1506 RAM file apen

158D RAM file ¢close

167F CAS device control block
1689 CAS file open

16AD CAS file close

18C7 CAS file put

1602 CAS file get

1754 LPT device control block
175A LPT file put

1762 COM device control block
176C MDM file open

176D COM file open

179k COM file close

17A8 COM and MDM file put

17B0 COM and MDM file get

1701 MDM device control block
1708 MDM file close

17E6 sets serial interface per Stat
1877 WAND device control block
1889 BASIC function EQF

1904 BASIC function TIME$

190F get time string to HL

1924 BASIC function DATES

192F get date string to HL

1955 BASIC function DAY$

1962 get day string to HL

1978 “SunMonTueWedThuFriSat”
1999 convert hex to digit

18A0 loads clock/calendar into RAM
19AB BASIC command TIMES$=
188D BASIC command DATES=
19F % BASIC command DAY$=
18FA BASIC command MAXRAM
1A78 BASIC command {PL

tASE BASIC command MDM, COM
1AB2 BASIC command KEY/(

1BOF BASIC command ON TIMES
1B32 clock/calendar pulse handler
iBB8§ BASIC keyword KEY

1BBD BASIC command KEY LIST
1BEO prints memory to screen fiitering
1057 BASIC command PSET
1C866 BASIC command PRESET
1090 BASIC function CSRLIN
1D8B BASIC keyword MAX

10B2 BASIC command MAXFILES

. Appendix B 287

Address

1DB9
1BC3
iDC5
1DES
1DEG
1DEC
1DFA
1E22
1ESE
1E5E
1F3A
191
1FBE
2037
20FE
220F
2280
2289
22CC
22DD
2377
2413
2456
2491
2491
24A7
2542

2573
25D5
25DB
25E1
260B
260E
2611
2650
2653
2656
26FE
2705
273A
2781
28CC
290C
2943
204F
295F
296D

Function

BASIC keyword HIMEM
BASIC command WIDTH
BASIC command SQUND
BASIC command SQUND OFF
BASIC command SOQUND ON
BASIC command MOTOR
BASIC command CALL
BASIC command SCREEN
BASIC command LCOPY
screen dump routine

BASIC command FILES
BASIC command KILL

BASIC command KILL for DO file
BASIC command NAME
BASIC command NEW

opens RAM DO file

BASIC command CSAVE
biock move to tape

CSAVEM

BASIC command CSAVEM
BASIC command CLOAR
block move from tape
CLOAD?

BASIC command LOADM
BASIC command RUNM
BASIC command CLOADM
block move of B bytes from HL to DE
increasing

CLOADM?

“Top: "

“End: *

“Exe:

open for output CAS:.BA
open for output CAS:.DO
open for output CAS:..CO
open for input CAS..BA

open for input CAS:.DO

open for input CAS:.CO
“Found:”

“Skip:”

BASIC function STR$

prints a line to screen

string concatenation

btock move bytes from BC to DE increasing
BASIC function LEN

BASIC function ASC

BASIC function CHR$

BASIC function STRINGS$

288 Inside the Model 100

Address

298E
28AB
29D6
29E6
2A07
2A37
2B4C
2B69
2B78
2CFF

2DC7
2EEB
2EEF
2F09
2F58
2F71
2FCF
305A
30A4
313E
325C to 33DB
33DC
33F2
3407
3469
3472
3498
34C2
34FA
3501
352A
35BA
3645
3654
36F8
3704
3725
377E
370F
37F4
37FD
3803
380E
3904
3D7F

Function

BASIC function SPACES$

BASIC function LEFTS$

BASIC function RIGHTS

BASIC function MID$

BASIC function VAL

BASIC function INSTR

BASIC function FRE

BASIC operation double precision subtraction
BASIC operation double precision addition
BASIC operation double precision
multiplication

BASIC operation double precision division
bicck move

BASIC function COS

BASIC function SIN

BASIC function TAN

BASIC function ATN

BASIC function LOG

BASIC function SQR

BASIC function EXP

BASIC function RND

floating point constants

restart 30 routine

BASIC function ABS

SGN

block move B bytes from DE to HL increasing
block move B bytes from DE to HL decreasing
BASIC operator single precision comparison
BASIC operator integer comparison

BASIC operator doubie precision comparison
BASIC function CINT

BASIC function CSNG

BASIC function CDBL

BASIC function FIX

BASIC function INT

BASIC operator integer subtraction

BASIC operator integer addition

BASIC operator integer muitiplication

BASIC operator integer division

BASIC operator MOD

BASIC operator single precision addition
BASIC operator single precision subtraction
BASIC operator single precision multiplication
BASIC operator single precision division
convert hex to integer and print

BASIC operator single precision
exponentiation

~ oo Appendix B 289

Address
3DBE

3DF7
3FAQ
3FB2
3FB9
407F
409A
409F
40DA
40F9
4174
4220
4225
4229
422D
4231
4235
423A
423F
4244
4249
424E
4253
4258
425D
4262
4269
426E
4270
427C
428A
42A5
42A8
438A to 43A1
43B8 to 43F9
4408
4431
4433
4437
4438
443F
4441
4444
4453
445C
4461

Function

BASIC operator double precision
exponentiation

BASIC operator integer exponentiation
BASIC command TIMES ON
BASIC command TIMES$ OFF
BASIC command TIMES STOP
BASIC command RESTORE
BASIC command STOP

BASIC command END

BASIC command CONT

BASIC command CLEAR

BASIC command NEXT

CRand LF to LCD

LFioLCD

BEEP to LCD

LCD cursor home

LCD clear screen

LCD set label line

LCD unlock label line

LCD disallow scrolling

LCD allow scrolling

LCD cursor on

LCD cursor off

L.CD delete line at cursor

LCD insert blank line at cursor
LCD erase to end of line

LCD escape X seguence

£ CD enter reverse character mode
LCD exit reverse character mode
LCD send escape sequence

LCD set cursor position

LCD erase function key display
LCD set and dispiay function keys
LCD display function keys

iookup table for special ASCH LCD characters
lookup table for LCD escape sequences
LECD TAB routine

LCP ESC p routine

LCD ESC g routine

LCD ESC U routine

LCD ESC T routine

LCD ESC V routine

LCD ESC W routine

LCD ESC X routine

LCD ESC C routine

L.CD ESC D routine

LCD backspace routine

290 Inside the Model 100

Address

4469
446E
4480
4494
44A8
44A8
44AF
44BA
44C4
44EA
4535
4537
4548
4548
463E
4644
4684
4696
46A0
46A0
46A0
46C3
46G3
46CA
4788
4991
4B44
4B55
4BAC
4BEA
4C0OF
4CGCB
4D59
4D70
4D71
4DCF
4E28
4E8E
4F0A
4F0B
404E
5051
5054
5057

Function

LCD ESC A routine

LCD ESC B routine

LCD TARB routine

LCD line feed routine
LCD vertical tab routine
LCD ESC H routine

LCD ESC P routine

.G ESC Q routine

LCD ESC M routine

L.CD ESC L routine

LCD ESC | routing

LCD ESC k routine

LCD ESC J routine

LCD ESC E routine
prompt with 7 and get line
get line from keyboard
BASIC control-C handler
BASIC ENTER handler
BASIC backspace handler
BASIC leftarrow handler
BASIC CTRL-H handier
BASIC CTRL-U handler
BASIC CTRL-X handler
BASIC TAB handler
BASIC command DIM
BASIC command USING
character to L.CD

put to printer expanding ASCH 09
carriage return to printer
BASIC function INKEY$
filename string scan
BASIC command OPEN
COM: file close routine
BASIC command LOAD
BASIC command MERGE
BASIC command SAVE
BASIC command CLOSE
BASIC function INPUTS
clear B bytes of memory at HL

load A into B bytes of mnemory at HL

had file name
already open
direct statement in file
file not found

Appendix B 291

Address

505A
506D
5080
5063
5066
506B
506D
506F
5071
5073
50F1 o 5112
5113 to 5124
5146
51C0
522F
524D
528BB
5200
532D
5455
55623
553E
5550
558D
567E
571E
5791
5797
S70F
582E
5834
5870
58C8
5A58
5A62
SAT9
5A7C
S5AQE
5AA9
5AE3
5B3E
5B486
5868
5B6F

Function

file not open

bad fite number

undefined input error iE

input past end

undefined error FL

BASIC function LOF

BASIC function LOC

BASIC command LFILES
BASIC function DSKO$
BASIC function DSKI$

BASIC device control block name match table
address table for device control biccks
TELCOM start location
TELCOM Stat function key
TELCOM Call function key
TELCOM Find function key
disconnect phone line
connect phone line

autodialer routine

TELCOM Term function key
TELCOM Prev function key
TELCOM Full/Half function key
TELCOM Echo function key
TELCOM Up function key
TELCOM Down function key
TELCOM Bye function key
CR/LF, then display string at HL up to null
go to main menu

display copyright notice
display number of free bytes
menu select handler

list files on screen

move cursor across filenames
send string to screen

block move

clear function keys

set function keys

display function keys

search for filename in directory
get top address of file

used to clear all function keys
normal BASIC function keys
ADDRSS routine

SCHEDL routine

6016 to 6055
607C
B08A
60BE
60DE
60E2
610B
6118
6151
6155
B17A
618C
61C2
61D7
B81FD
6208
6210
621C
6242
628F
6431
6445
6551
65C3
667C
6691
6713
6774
6AC3
6B61
6B6D
6B9F
6BDB

6BE6

6BF1 to 6G48
6C49

292 Inside the Model 100
Address Function
5BF5 ADDRSS/SCHEDL Find function key
5BF7 ADDRSS/SCHEDL Lfind function key
5D46 is character at HL a space?
5D8A home cursor
5DEE TEXT routine
5ES1 BASIC command EDIT

TEXT CTRL~character address table
TEXT CTRL-P (escape) handler
TEXT TAB handler

TEXT carriage return handler

TEXT rightarrow handler

TEXT downarrow handler

TEXT backspace handler

TEXT detete handier

TEXT leftarrow handier

TEXT uparrow handier

TEXT SHIFT-rightarrow handler
TEXT SHIFT-leftarrow handler
TEXT SHIFT-uparrow handler

TEXT SHiFT-downarrow handler
TEXT CTRL-rightarrow handier
TEXT CTRL-leftarrow handier

TEXT CTRL-uparrow handler

TEXT CTRLi-downarrow handler
TEXT 3el function key handier
TEXT CTRL-C and SHIFT-BREAK handler
TEXT Copy function key handler
TEXT Cut function key handler
TEXT Find function key handler
block move HL to DE until null
TEXT tab handler

TEXT SHIFT-PRINT handier

TEXT Save function key handler
TEXT Load function key handler
HALT in TEXT- why?

insert character in RAM file

insert spaces in RAM file

delete characters from RAM file
biock move BC bytes from HL to DE
increasing

block move BC bytes from HL to DE
decreasing

initialization value for RAM directory
BASIC routine starts here

Appendix B 293

Address

6CD6
6CEQ
6CED
6CFC
6D3F
606D
6D7E
6DAC
6DBE
6E0B
6E1E
B6E32
B8E75
6E94 to BEAS
6EAS
6ECB
6EEF
6F31
6F32
6F46
6F5B
6F85
6FDB
702A
7055 to 7241
7T1E4
7242
7270

7283

729F

72C5

7304 to 7326
7329

7391

74490

744C

744D

7551 to 7653
7662

7676

767D to 76DB
76DE

7711

Function

cold start reset

warm start reset

set 256 Hertz interrupt

initialize disk drive

putto LPT

inspect incoming serial gueue

get incoming serial data

handles UART data ready

parity, overrun, framing error

put CTRL-Q to UART

put CTRL-S to UART

put byte to UART

set UART baud rate

baud rate table

set baud rate and modem
deactivate UART

carrier detect

enabie CTL-$, CTL-Q protocol
disable CTL-S, CTL-Q protocol
cassette write header and synch byte
put one byte to cassette

cassette read header and synch byte
cassette bit-input routine

cassette byte-input routine
keyboard scanning code

add a character to keyboard buffer
get keyboard contents

check keyboard for characters or
SHIFT-BREAK

check keyboard for SHIFT-BREAK or CTRL-C
check keyboard for SHIFT-BREAK
BASIC command SQUND

disk input routine

clock/calendar data loader
clock/calendar timing puise handler
cursor set routine

pixel set routine

pixel reset routine

LCD location table

BEEP routine

toggie beeper

disk bootstrap loader

disk output routine

I.CD character generation table

294 Inside the Model 100

Appendix C

295

Address

7BF1tc 7D32
7D33
7D43
7D6C
7DET
TE24
7TEAC
7TEC6E
7FD6

Function

keyboard decoding table

RESET routine

erase all files if CTRL-BREAK pushed
test for option ROM

erase ali files

load option ROM if present

prints number of free bytes

initialize BAM vectors

restart 38 handler

Appendix C.
8080, 8085, & Z80 Opcodes

Decimal] Hex 8080 Opcode Z80 Opcode
o] o0 NOP NOP
i C1 FF FF] LXI B,FFFF LD BC,FFFF
2 o2 STAX B LD (BC),A
3 03 INX B INC BC
4 Ca INR B INC B
5 05 DCR B DEC B
6 06 FF MVI B,FF LD B,FF
7 c7 RLC RLCA
8 08 -Data- -Data-
9 oS DAD B ADD HL,BC
10 | OA LDAX B LD A, (BC)
11 | OB DCX B DEC BC
12 | OC INR C INC C
13 | OD DCR C DEC C
14 | OE FF MVl C,FF LD C,FF
15 | OF RRC RRCA
i6 | 10 ~-Data- -Data-
17 | 11 FF FF|LXI D,FFFF | LD DE,FFFF
18 |12 STAX D LD (DE),A
19 113 INX D INC DE
20 | 14 INR D INC D
21 115 DCR D DEC D
22 | 1e FF MVI D,FF LD D,FF
23 |17 RAL RLA
249 118 -Data- -Data-
25 |19 DAD D ADD HL,DE
26 | 1A LDAX D LD A, (DE)
27 | iB DCX D DEC DE
28 11C INR E INC E
29 1D DCR E DEC E
30 {1E FF MVI E,FF LD E,FF
31 j iF RAR RRA
Table C.1. Numerical list of Opcodes

296 Inside the Mode! 100

Appendix C 297

Decimal | Hex 8080 Opcode 280 Opcode
32 |20 RIM] =-==---
33 |21 FF FFJLXI H,FFFF LD HL,FFFF
34 |22 FF FF{ SHLD FFFF LD (FFFF),HL
35 |23 INX H INC HL
36 |24 INR H INC H
37 125 DCR H DEC H
38 126 FF HVI H,FF LD H,FF
39 (27 DAA DAA
40 128 -Data- -Data-
41 |29 DAD HL ADD HL,HL
42 | 2A FF FF| LHLD FFFF LD HL, (FFFF)
43 | 2B DCX H DEC HL
449 |2C INR L INC L
45 | 2D DCR L DEC L
46 | 2E FF MVI L,FF LD L,FF
47 |2F CHA CPL
48 |30 sz | --==-
49 |31 FF FF|LX1 SP,FFFH LD SP,FFFF
50 |32 FF FF|STA FFFF LD (FFFF),A
51 |33 INX SP INC SP
52 |34 INR M INC (HL)
53 135 DCR N DEC (HL?
S4 |36 FF MVI NM,FF LD (HL),FF
S5 |37 STC SCF
56 |38 =Data- ~Data-
37 |39 DAD SP ADD HL,SP
S8 |3A FF FF|LDA FFFF LD A, (FFFF)
59 | 3B DCX SP DEC 3P
60 |[3C INR A INC A
61~ | 3D DCR A DEC A
62 |3E FF MVI A,FF LD A,FF
63 | 3F CHC CCF
64 [40 HOV B, B LD B,B
65 |41 MOV B,C LD B,C

Decimal]| Hex 8080 Opcode Z80 Opcode
66 | 42 MOV B,D LD B,D
&7] 43 MOV B,E LD B,E
68 | 44 MOV B,H LD B,H
€69] 45 MOV B,L LD B,L
70 | 46 MOV B, K LD B, (HL)
71 47 MOV B, A LD B,A
72| 48 MOV C,B LD C,B
73] 49 MOV C,C LD C,C
74 | 4A MOV C,D LD C,D
75| 4B MOV C.,E LD CL,E
76 | 4C MOV C,H LD C,H
77| 4D MOV C,L LD C,L
78 1 4E MOV C,M LD C, (HL)
79| 4F MOV C,A LD C,A
80| 50 MOV D,B Lp D,B
81} 51 MOV D,C LD p,C
82| 52 Mov D,D Lb b,D
83| 53 MOV DLE LD p,E
84 | 54 MOV D,H LD D,H
85| 55 MOV D,L LD D,L
86 | 56 MOV D,M LD D, (HL)
87 1 57 MOV D,A LD D,A
88| 58 MOV E,B LD E,B
838 | 59 NOV E,C LD E,C
90 | SA MOV E,D LD E,D
91| SB MOV ELE LD E,E
a2{ SC MOV E.H LD E,H
93| 5D MOV E,L LD E,L
94 | 5E MOV E,NM LD E, (HL)
95 | SF MOV E, A LD E,A
96 | 60 MOV H,B LD H,B
97§ 61 MOV H,C LD H,C

Tahle C.1.

{cont.)

Table C.1. {cont.)

208 Inside the Modei 100 Appendix C 299

Decimal Hex 8080 Opcode 280 Opcode Decimai] Hex 8080 Opcode Z80 Opcode
98 62 MOV H,D LD H,D 129181 ADD C ADD A,C
99 63 MOV H,E LD H,E 13082 ADD D ADD A,D
100 64 MOV H,H LD H,H 131 |83 ADD E ADD ALE
101 65 MOV H,L LD H,L 132184 ADD H ADD A,H
102 66 MOV H,M LD H, (HL) 13385 ADD L ADD A,L
103 67 MOV H,A LD H,A 134 |86 ADD M ADD A, (HL)
104 68 MOV L,B LD L,B 135187 ADD A ADD A, A
105 69 MOV L,C LD L,C 136 |88 ADC B ADC A,B
106 6A MOV L,D LD L,D 137 |89 ADC C ADC A,C
107 6B MOV L,E LD L,E 138 |8A ADC D ADC A,D
108 6C MOV L,H LD L,H 139]88 ADC E ADC ALE
109 6D MoV L,L LD L,L 14018C ADC H ADC A,H
110 6E MOV L,N LD L, (HL) 141 8D ADC L ADC A,L
111 6F MOV L,A LD L,A 142 |8E ADC M ADC A, (HL)
112 70 MOV M,B LD (HL),B 143 j8F ADC A ADC A,LA
113 71 MOV M,C LD (HL),C 144190 SUB B SUB A,B
114 72 MOV M,D LD (HL)>,D 145191 SUB C SUB A,C
115 73 MOV N,E LD (HL),E 146 |92 SUB D SUB A,D
116 74 MoV M, H LD (HL),H 147 {93 SuB E SUB A,E
117 75 MOV X,L LD (HL),L 148194 SUB H SUB A,H
118 76 HLT HALT 14995 SUB L SUB A,L
119 77 MOV M, A LD (HL),A 150 |96 SUB M SUB (HL)
120 78 MOV A,B LD A,B 151 |97 SUB A SUB A,A
121 79 MOV A,C LD A,C 152 |98 SBB B SBC A,B
122 7A ' MOV A,D LD A,D 133 99 SBB C SBC A,C
123 7B MOV ALE LD A,E 154 |9A SBB D SBC A,D
124 7C MOV ALH LD A,H 155 |98 SBB E SBC AL,E
125 7D MOV A,L LD A,L 156 |9C SBBR H SBC ALH
126 7E MOV A, N LD A, (HL) 157 |9D SBB L SBC A,L
127 7F MOV A,A LD A,A 158 [SE SBB M SBC A, (HL)
128 80 ADD B ADD A,B 139 |9F SBB A SBC A,A
Table C.1. (cont.) Tabte C.1. (cont.)

300 Inside the Model 100 Appendix C 301

Decimal { Hex 8080 Opcode Z80 Opcode Decimal lH“ 8080 Opcode 280 Opcode
160} AO ANA B AND B 191} BF CHMP A CP A
161] A1 ANA C AND C 192|Co RNZ RET N2z
162] a2 ANA D AND D 193] C1 POP B POP BC
163 A3 ANA E AND F 194]C2 FF FF| JNZ2 FFFF JP NZ,FFFF
164] A4 ANA H AND H 195]C3 FF FF| JMP FFFF JP FFFF
165] AS ANA L AND L : 196]C4 FF FF| CNZ FFFF CALL NZ,FFFF
166] A6 ANA N AND (HL) : 197fCS PUSH B PUSH BC
167 A7 ANA A AND A i 198iC6 FF ADI FF ADD A,FF
168 A8 XRA B XOR B 199|C7 RST O RST 00
169 A9 XRA C XOR C 200|ca RZ RET 2
170] AA XRA D XOR D 201|C9 RET RET
171] AR XRA E XOR E 202|CA FF FF| J2 FFFF JP Z,FFFF
172] AC XRA H XOR H 203jCB ~Data- -Data-
178| AD XRA L XOR L : 204|CC FF FF}CZ FFFF CALL Z,.FFFF
174| AE XRA M XOR (HL) G 205]CD FF FF{ CALL FFFF CALL FFFF
175l AF XRA A XOR A & 206 |CE FF ACI FF ADC A,FF
1761 BO ORA B OR B 207} CF RST 1 RST 08
1771 B1 ORA C OR C 208|DO RNC RET NC
178]| B2 ORA D OR D 209|D1 POP D POP DE
179| B3 ORA E OR E 210|D2 FF FF| JNC FFFF JP NC,FFFF
180| B4 ORA H OR H 211|D3 FF OUT FF OUT (FF),A
1811 BS ORA L OR L S 212|D4 FF FF| CNC FFFF CALL NC,FFFF
182]| BE ORA N OR (HL) - 213|DS PUSH D PUSH DE
183 B7 ORA A CR A R 214D6 FF SUl FF SUB FF
184] B2 CMP B CP B 215]D7 RST 2 RST 10
185] BS CHMP C CP C 216|Da8 RC RET C
186] BA CMP D CP D 217}1bo ~-Data- -Data-
187| BB CMP F CP E 218|DA FF FF|JC FFFF JP C,FFFF
188l BC CMP H CP H 219iDB FF IN FF IN A,(FF)
189| BD CHMP L CP L 220{DC FF FF|CC FFFF CALL C,FFFF
190 BE CMP M CP (HL) 3 221]DbD -Data- -Data-

Tabie C.1. (cont.) . Table C.1. (cont.)

302 Inside the Model 100

Decimal | Hex

8080 Opcode Z80 Opcode
253|FD -Data- -Data-
254 FE FF CPI FF CP FF
253|FF RST 7 RST 38

Decimal |Hex 8080 Opcode Z80 Opcode
222 |DE FF SBI FF SBC FF
223 |DF RST 3 RST 18
224 [EO RPO RET PO
2251E1 POP H POP HL
226 |E2 FF FF|JPO FFFF JP PO,FFFF
227 |E3 XTHL EX (SP),HL
228 |E4 FF FF|CPD FFFF CALL PO,FFFF
228 |ES PUSH H PUSH HL
230 |E6 FF ANI FF AND FF
231 |E7 RST 4 RST 20
232]E8 RPE RET PE
233]E9 PCHL JP (HL)
234 |EA FF FF|JPE FFFF JP PE,FFFF
235 |EB XCHG EX DE,HL
236 |[EC FF FF|CPE FFFF CALL PE,FFFF
237 |ED -Data- -Data-
238 |EE FF XRI FF XOR FF
239 |EF RST 5 RST 28
240 |FO RP RET P
241 |F1 POP PSW POP AF
2492 |F2 FF FF|JP FFFF JP P,FFFF
243 |F3 DI DI
2494 |F4 FF FF|CP FFFF CALL P,FFFF
245]F5 PUSH PSW PUSH AF
246 |F& FF ORI FF OR FF
247 |F7 RST & RST 3¢C
248 |F8 RM RET M
249 |F9 SPHL LD SP,HL
250 |FA FF FF|JM FFFF JP N, FFFF
251 |FB EIl EI
252 |FC FF FF|CM FFFF CALL M,FFFF
Table C.1. (cont.)

Table C.1. (cont.)

Appendix C 303

304 Inside the Medel 100 .
Appendix C 305

Decimal | Hex 8085 Opcode 280 Opcode
f a7 | 2F CNMA CPL
Decimal | Hex 8085 Opcode 8080 Opcode L 63 | 3F CMC CCF
’ i 191| BF CMP A CP A
184| B8 CMP B CP B
206 |CE FF ACI FF ADC A,FF 185) B3 CMP C CP C
143| eF ADC A ADC A,A 186| BA CMP D CP D
136|888 ADC B ADC A,B 187| BB CHP E CP E
137]89 ADC C ADC A,C 188|BC CMP H CP H
138]5A ADC D ADC A,D 189 BD CMP L CcP L
139|8B ADC E ADC A,E f 1950| BE CMP M CP (HL)
140|8cC ADC H ADC ALH £ ! 212|D4 FF FF| CNC FFFF CALL NC,FFFF
141]8D ADC L ADC A,L E 196 C4 FF FF| CNZ FFFF CALL N2Z,FFFF
142|8E ADC M ADC A, (HL) ' 244|F4 FF FF| CP FFFF CALL P,FFFF
13587 ADD A ADD A,A i 2361 EC FF FF| CPE FFFF CALL PE,FFFF
128]{80 ADD B ADD A,B o 254|FE FF CPI FF CP FF
12981 ADD C ADD A.C 228|E4 FF FF| CPO FFFF CALL PO,FFFF
130|82 ADD D ADD A,D 204|CC FF FF| CZ FFFF CALL Z,FFFF
13183 ADD E ADD ALE 39 |27 DAA DAA
132|884 ADD H ADD A.H 9 |o° DAD B ADD HL,BC
133]|85 ADD L ADD A,L £y 25 |19 DAD D ADD HL,DE
134|886 ADD M ADD A, (HL)] 41 129 DAD HL ADD HL,HL
198|C6 FF ADI FF ADD A,FF 1* 37 |39 DAD SP ADD HL,SP
167|A7 ANA A AND A 61 |3D DCR A DEC A
160| A0 ANA B AND B ? 05 DCR B DEC B
161]A1 ANA C AND C 3 |op DCR C DEC C
162| A2 ANA D AND D 21 |15 DCR D DEC D
163]| a3 ANA E AND E 29 1iD DCR E DEC E
164] a4 ANA H AND H 37 |25 DCR H DEC H
165] AS ANA L AND L 45 |2D DCR L DEC L
166 A6 ANA N AND C(HL) 53 |35 DCR M DEC (HL)
230|E6 FF ANI FF AND FF Table C
205|cp FF FF|cCALL FFFF CALL FFFF able C.2. (cont)
220|DbC FF FF|cCC FFFF CALL C,FFFF
252|FC FF FF|CM FFFF CALL M,FFFF

Tabie C.2. Alphabetical list of 8085 opcodes

Appendix C 307

306 Inside the Model 100

Decimal | Hex 8085 Opcode Z80 Opcode
11 |CB DCX B DEC BC
27~ | 1B DCX D DEC DE
43 | 2B DCX H DEC HL
59 |3B DCX SP DEC SP
243|F3 DI DI
251} FB EI El
118176 HLT HALT
219{DB FF IN FF IN A, (FF)
€60 |3C INR A INC A
4 04 INR B INC B
12 joC INR C INC C
20 {14 INR D INC D
28 |1C INR E INC E
36 (24 INR H INC H
44 |2C INR L INC L
52 |34 INR N INC (HL)
3 03 INX B INC BC
19 |13 INX D INC DE
35 |23 INX H INC HL
51 |33 INX SP INC SP
218 |DA FF FF| JC FFFF JP C,FFFF
250 |FA FF FF|{JM FFFF JP M,FFFF
19S|C3 FF FF} JMP FFFF JP FFFF
210|D2 FF FF| JNC FFFF JP NC,FFFF
194 {C2 FF FF| IJNZ FFFF JP NZ,FFFF
242 |F2 FF FF|JP FFFF JP P,FFFF
234 [EA FF FF}JPE FFFF JP PE,FFFF
226 |E2 FF FF|JPO FFFF JP PO,FFFF
202 {[CA FF FF}J2 FFFF JP 2,FFFF
S8 |3A FF FF|LDA FFFF LD A,(FFFF)
10 |OA LDAX B LD A, (BC)
Table C.2. (cont.)

Decimal | Hex 8085 Opcode Z80 Opcode
26 | 1A LDAX D LD A, (DE)
42 1 2A FF FF|LHLD FFFF LD HL, (FFFF)
1 01 FF FF|LXI B,FFFF LD BC,FFFF
17 {11 FF FF|LXI D,FFFF LD DE,FFFF
33 |21 FF FF|LXI H,FFFF LD HL,FFFF
49 | 31 FF FF|LX1 SP,FFFF| LD SP,FFFF
127] 7F MOV A,A LD A,A
120] 78 MOV A,B LD A,B
121179 MOV A,C LD A,C
1221 7A MOV A,D LD A,D
123| 7B MOV ALE LD A,E
1241 7C MOV A,H LD A,H
125170 MOV A,L LD A,L
126| 7E MOV A M LD A, (HL)
71 147 MOV B, A LD B,A
64 |40 MOV B,.B LD 8,B
65 |41 MOV B,C LD B,C
66 |42 MOV B,D LD B,D
67 |43 MOV B,E LD B,E
68 |44 MOV B,H LD B,R
69 [4% ROV B,L LD B,L
70 |46 MOV B, M LD B, (HL)
79 | 4F MOV C,A LD C,A
72 |48 MOV C,B LD C,B
73 [49 MOV C,C LD C,C
74 {4A MOV C,D LD C,D
75~ | 4B MOV CLE LD C,E
76 | 4C MOV C,H LD C,H
77 4D MOV C,L LD C,L
78 |4E MOV C, M LD C, (HL)
87 |57 MOV D, A LD D,A
Table C.2. (cont)

308 Inside the Model 100 Appendix C 309

Decimal | Hex 8085 Opcode Z80 Opcode Decimal | Hex 8085 Opcode Z80 Opcode
80 | 50 MOV D,B LD D,B 119| 77 MOV M,A LD (HL),aA
81 |51 MoV D,C LD D,C 112} 70 ¥OV M,B LD (HL),B
82 | 52 MOV D,D LD D,D 113} 71 MOV N,C LD (HL),C
83 |53 MOV D,E LD D,E 114|722 MOV M,D LD ¢HL),D
84 | 54 MOV D,H LD D,H 115{73 MOV M,E LD (HL),E
85 | 55 MOV D,L LD D,L 116] 74 MOV M,H LD (HL),H
86 | 56 MOV D, LD D, (HL) 117|175 MOV NM,L LD (HL),L
95 | SF MOV E,A LD E,A 62 |3E FF MVI A FF LD A,FF
88 | 58 MOV E,B LD E,B 6 06 FF MVI B,FF LD B,FF
89 | 59 MOV E,C LD E,C 14 |{OE FF MVI C,FF LD C,FF
90 | SA MOV E,D LD E,D 22 |16 FF MVI D,FF LD D,FF
91 | 5B MOV E,E LD E,E 30 [1E FF MVI E,FF LD E,FF
92 | 5C MOV E,H LD E,H 38 |26 FF MVI H,FF LD H,FF
93 | 5D KOV E,L LD E,L el 46 | 2E FF MVI L,FF LD L,FF
94 | SE MOV E,N LD E, (HL) ' S54 |36 FF MVI M,FF LD (HL),FF
103]| 67 MOV H,A LD H,A S o |[oo NOP NOP
96 | 60 MOV H,B LD H,B 183|B7 ORA A OR A
97 {61 MOV H,C LD H,C 17¢| BO ORA B OR B
98 |62 MOV H,D LD H,D 177| B1 ORA C OR C
99 | 63 MOV H,E LD H,E 178| B2 ORA D OR D
100} 64 MOV H,H LD H,H 179] B3 ORA E OR E
101]| 65 MOV H,L LD H,L T3 180| B4 ORA H OR H
102| 66 MOV H,M LD H, (HL) _ 181| BS ORA L OR L
111| 6F MOV L,A LD L,A 182] B6 ORA M OR (HL)
104] 68 MOV L,B LD L,B 246f Fé FF ORI FF OR FF
105] 69 MOV L,C LD L,C 211|D3 FF OUT FF OUT (FF),A
106|6A Mov L,D LD L,D 233| E9 PCHL JP (HL)
107]{ 6B MOV L,E LD L,E 193|cC1 POP B POP BC
108} 6C MOV L,H LD L,H 209| D1 POP D POP DE
109|6D MOV L,L LD L,L : 225]E2 POP H POP HL
110|6E MOV L,NM LD L, (HL) : 241|F1 POP PSW POP AF

Table C.2. (cont.) Table C.2, (cont.)

310 Inside the Model 100

Appendix C 311%

Decimal] Hex 8085 Opcode 280 Opcode
197} CS5 PUSH B PUSH BC
213| DS PUSH D PUSH DE
229] ES PUSH H PUSH HL
245) FS PUSH PSW PUSH AF
23 |17 RAL RLA
31 | 1F RAR RRA
216 D8 RC RET C
201}] ¢S RET RET
32 120 RIM | ====-

7 o7 RL.C RLCA
248] F8 RM RET N
208] DO RNC RET NC
192} CO RNZ RET N2
240] FO RP RET P
232| E8 RPE RET PE
224| EO RPO RET PO
15 { OF RRC RRCA
199} C7 RST © RST 00
207|CF RST 1 RST 08
2151 D7 RST 2 RST 10
223| DF RST 3 RST 18
231 E? RST 4 RST 20
239| EF RST S RST 28
247{F7 RST & RST 30
255\ FF RST 7 RST 38
200} cCs8 RZ RET 2
1591 9F SBB A SBC A,A
152198 SBB B SBC A,B
15399 SBB C SBC A,C
154 {9A SBB D SBC A,D

Table C.2. (cont.)

Decimal | Hex 8085 Opcode 280 Opcode
155]%B SBB E SBC ALE
156]9C SBB H SBC A,H
157|9D SBB L SBC A,L
158|9E SBB M SBC A, (HL)
222|DE FF SBI FF SBC FF
34 |22 FF FF| SHLD FFFF LD (FFFF),HL
48 |30 s;1Im] m-me-
249]FS SPHL LD SP,HL
50 |32 FF FF| STA FFFF LD (FFFF),A
2 o2 STAX B LD (BC),A
18 |12 STAX D LD (DE),A
55 |37 STC SCF
151]97 SUB A SUB A,A
14490 SUB B SUB A,B
145191 SUB C SUB A,C
14692 SUB D SUB A,D
147193 SUB E SUB AL,E
148194 SUB H SUB A,H
149195 SUB L SUB A,L
150196 SUB M SUB (HL)
214|D6 FF SUl FF SUB FF
235 |EB XCHG EX DE,HL
175]AF XRA A XOR A
168 A8 XRA B XOR B
1€9]A9 XRA C XOR C
170 AA XRA D XOR D
171 |AB XRA E XOR E
172 |AC XRA H XOR H
173 |AD XRA L XOR L
174 |AE XRA M XOR (HL)
238]|EE FF XRI FF XOR FF
227|E3 XTHL EX (SP),HL

Table C.2. (cont.)

312 Inside the Modei 100

Appendix C 313

Decimal { Hex 8080 Opcode Z80 Opcode
142} 8E ADC M ADC A, (HL)
143 |8F ADC A ADC A,A
136 |88 ADC B ADC A,B
137189 ADC C ADC A,C
138|8A ADC D ADC A,D
139{8B ADC E ADC AL,E
206 |CE FF ACI FF ADC A,FF
140 |8C ADC H ADC A,H
141 (8D ADC L ADC A,L
134 |86 ADD M ADD A, (HL)
135]87 ADD A ADD A, A
128 |80 ADD B ADD A,B
129|812 ADD C ADD A,C
13082 ADD D ADD A,D
131 |83 ADD E ADD ALE
198 |Ce FF ADI FF ADD A,FF
132184 ADD H ADD A,H
133]85 ADD L ADD A,L
S 09 DAD B ADD HL,BC
25 |19 DAD D ADD HL,DE
41 |29 DAD HL ADD HL,HL
57 139 DAD SP ADD HL,SP
166 |AE ANA N AND (HL)
167 [A7 ANA A AND A
160 A0 ARA B AND B
161 JAL ANA C AND C
162 |A2 ANA D AND D
163 |A3 ANA E AND E
230 |E6 FF ANI FF AND FF
164 |A4 ANA H AND H
165 |AS ANA L AND L

Table C.3. Alphabetical list of Z80 opcodes

Decimai | Hex 8080 Cpcode Z80 Opcode
2201 DC FF FF|CC FFFF CALL C,FFFF
205| CD FF FF|CALL FFFF CALL FFFF
252/ FC FF FF|CX FFFF CALL M,FFFF
212\ D4 FF FF|CNC FFFF CALL NC,FFFF
196{C4 FF FF|CN2 FFFF CALL NZ,FFFF
244|F4 FF FF|{CP FFFF CALL P,FFFF
236| EC FF FF|CPE FFFF CALL PE,FFFF
228|E4 FF FF|CPO FFFF CALL PO,FFFF
204|CC FF FF|C2Z FFFF CALL Z,FFFF
63 | 3F CHC CCF
190| BE CHP N CP (HL)
191} BF CHP A CP A
184| B8 CHP B CP B
1851 B9 CMP C Cp C
186 | BA CHMP D CP D
187{BB CHMP E CP E
254|FE FF CPl FF CP FF
188 BC CMP H CP R
189|BD CHMP L CP L
47 | 2F CHA CPL
39 |27 DAA DAA
53 |35 DCR M DEC (HL)
&1 |3D DCR A DEC A
S 09 ‘DCR B DEC B
11 |oOB DCX B DEC BC
13 jOD DCR C DEC ¢
21 {15 DCR D DEC D
27 |1B DCX D DEC DE
29]1D DCR E DEC E
37 |25 DCR H DEC H
43~ | 2B DCX H DEC HL
45 |20 DCR L DEC L
%9 | 3B DCX SP DEC SP
243 F3 DI D1
Table C.3. (cont.)

314

Inside the Model 100

Appendix C 315

Decimal | Hex 8080 Opcode 280 Opcode
251]FB EI EI
227]E3 XTHL EX (3P),HL
235|EB XCHG EX DE,HL
118176 HLT HALT
219|DB FF IN FF IN A, (FF)
52 |34 INR M INC (HL)
60 |3C INR A INC A
4 04 INR B INC B
3 03 INX B INC BC
12 joC INR C INC C
20 14 INR D INC D
i9 |13 INX D INC DE
28 |1cC INR E INC E
36 |24 INR H INC H
35 |23 INX H INC HL
44 |2C INR L INC L
51 |33 INX SP INC SP
233]E9 PCHL JP (HL)
218|DA FF FF|JC FFFF Jp C,FFFF
195|C3 FF FF|JMP FFFF JP FFFF
250|FA FF FF|JN FFFF JP M,FFFF
210fiD2 FF FF|JNC FFFF JP NC,FFFF
1941C2 FF FF]|JNZ FFFF JP NZ2,FFFF
242|F2 FF FF|JP FFFF Jp P,FFFF
234|EA FF FF|JPE FFFF JP PE,FFFF
226|E2 FF FF|JPO FFFF JP PO,FFFF
202{CA FF FF|{JZ FFFF JP Z,FFFF
2 o2 STAX B LD (BC),A
18 |12 STAX D LD (DE),A
50 |32 FF FF|STA FFFF LD (FFFF),A
34 |22 FF FF|SHLD FFFF LD (FFFF),HL
119}77 MOV M, A LD (HL),A
112170 MOV N,B LD (HL),B
113|172 MOV N,C LD HL),C
11472 MOV N,D LD (HL),D

Decimal | Hex 8080 Opcode Z80 Opcode
115]|73 MOV NM.E LD (HL),E
54 |36 FF KVI N,FF LD (HL),FF
11674 KOV M, H LD (HL),H
117175 MOV NM,L LD (HL),L
10 |OA LDAX B LD A, (BC)
26 1A LDAX D LD A, (DE)
38 |3A FF FF] LDA FFFF LD A, (FFFF)
126)7E MOV AN LD A, (HL)
127(|7F HOV ALA LD A,A
12078 HOV A,B LD A,B
12179 MOV A,C LD A,C
122|7A MOV A,D LD A,D
123{7B KOV AL,E LD AL,E
62 |3E FF MVI A,FF LD A,FF
124]7C HOV A.H LD A,M
125({7D MOV A,L LD A,L
70 |46 MOV B,M LD B, (HL)
71~ 147 MOV B,A LD B,A
&4 |40 KOV B,B LD B,B
65 [41 MOV B,C LD B,C
66 |42 MOV B,D LD B,D
67 |43 NMOV B,E LD B,E
13 06 FF MVI B,FF LD B,FF
68 |44 MOV B,H LD B,H
&3 |45 NOV B,L LD B,L
i 01 FF FF| LXI B,FFFF LD BC,FFFF
78 |4E MOV C,NM LD C, (HL)
79 |4F MOV C,A LD C,A
72 |48 MOV C,B LD C,B
73 [49 MOV C,C LD C,C
74 j4A MOV C,D LD C,D
75 |4B MOV C,E LD C,E
14 |OE FF MVl C,FF LD C,FF
76 |4C MOV C,H LD C,H

Table C.3. (cont.)

Tabie C.3. (cont.)

4316 Inside the Model 100

Appendix C 317

Decimal § Hex 8080 Opcode 280 Opcode
77 | 4D Mov C,L LD C,L
a6 | 56 MOV D,M LD D, (HL)
87 | 57 MOV D, A LD D,A
80 | 50 Mcov D,B LD D,B
g1 | 51 Mov D,C LD D,C
82 152 MOV D,D LD D,D
83 | 53 Mov D,E LD D,E
22 |16 FF MvI D,FF LD D,FF
84 | 54 MOV D,H Lpe D,H
a5 | 55 MoV D,L LD D,L
17 {11 FF FF|LXI D,FF¥FF LD DE,FFFF
94 | SE MOV E N LD E, (HL)
95 | 5F KOV E,A LD E,A
a8 |58 MoV E,B LD E,B
89 159 nov E,C LD E,C
90 | SA MOV E,D LD E,D
91 |SB MOV E,E LD E,E
30 |1E FF MVI E,FF LD E,FF
92 |5C HOV E,H LD E,H
93 | SD Mov E,L LD E,L
102] 66 MOV H, M LD H, (HL
103} 67 MOV H,A LD H,A
96 | 60 MOV H,B LD H,B
97 |61 MOV H,C LD H,C
98 (62 MOV H,D LD H,D
99 163 MOV H,E L.D H,E
38 |26 FF MVI H,FF LD H,FF
100| 64 MOV H,H LD H,H
101| 65 MOV H,L LD H,L
42 [2A FF FF{LHLD FFFF LD HL,(FFFF?
33 |21 FF FF|LXI H,FFFF LD HL,FFFF
110|6E MoV L,N LD L, (HL)
111|6F MOV L, A LD L,A
104168 MOV L,B LD L,B
Table C.3. (cont.)

Decimal jHex 8080 Opcode Z80 Opcode
105169 Kov L,C LD L,C
106 6A MOV L,D LD L,D
107 |6B MOV L,E LD L,E
46 |2E FF KVI L,FF LD L,FF
108 6C MOV L,H LD L,H
102)|6D MoV L,L LD L,L
49 |31 FF FF|LXI SP,.FFFF| LD SP,FFFF
249 |FS SPHL LD SP,HL
o oc NOP NOP
1821B6 ORA M OR (HL)
183;iB7 ORA A OR A
176 |{BO ORA B OR B
177 |B1 ORA C DR C
178 |B2 ORA D OR D
179iB3 ORA E OR E
246 |F& FF ORI FF OR FF
180 |B4 ORA H OR H
181 |BS ORA L OR L
211 |D3 FF OUT FF OUT (FF),A
241 |F1 POP PSW POP AF
193|C1 POP B POP BC
209|D1 POP D POP DE
225 |E1 POP H POP HL
245 |FS PUSH PSV PUSH AF
197 |C5 PUSH B PUSH BC
213|D5 PUSH D PUSH DE
229]ES PUSH H PUSH HL
201 |C9 RET RET
216 |D8 RC RET C
248 |F8 RM RET M
208 |DO RNC RET NC
192i(CO RN2 RET NZ
240 |FO RP RET P
232 |E8 RPE RET PE
224 JEO RPOD RET PO

Table C.3. (cont.)

318 Inside the Model 100

Appendix C 319

Decimal |Hex 8080 Opcode Z80 Opcode
2001 C8 RZ2 RET 2
23 |17 RAL RLA
7 07 RLC RLCA
31 j1F RAR RRA
15 |OF RRC RRCA
i99|C7 RST © RET 00
207 CF RST 1 RST 08
215|D7 RST 2 RET 10
223|DF RST 3 RST 18
231|E7 RST 4 RST 20
239|EF RST 5 RST 28
247 |F7 RST & RST 30
255|FF RST 7 RST 38
158|9E SBB M SBC A, (HL)
159 9F SBB A SBC A,A
15298 SBB B SBC A,B
153}99 SBB C SBC A,C
154 i9A SBB D SBC A,D
155|198 SBB E SBC A.E
156|9C SBB H SBC A,H
157§D SBB L SBC A,L
222{DE FF SBI FF SBC FF
55 137 STC 3CF
150|196 SUB M SUB (HL)
151197 SUB A SUB A,A
144190 SUB B SUB A.,B
14691 SuUB C SUB A,C
146 |92 SUB D SUB A,D
147193 SUB E SUB A.E
148194 SUB H SUB A.H
149]95 SUB L SUB A,L
214 |b6 FF Sul FF SUB FF
174 | AE XRA N XOR (HL)?
175 |AF XRA A XOR A

Decimal { Hex 8080 Opcode Z80 Opcode
168| A8 XRA B XOR B
169] A9 XRA C XOR €
170G AA XRA D XOR D
171| AB XRA E XOR E
2381 EE FF XRI FF XOR FF
172 AC XRA H XOR H
173 AD XRA L XOR L

Table C.3. (cont.)

Table C.3. (cont.)

Appendix D 321

Appendix D
Bibliography

MCS-806/85 Family User’s Manual, Intel Corporation, 3065 Bowers
Avenue, Santa Clara, CA 95051. Order no. 205775. $7.50.
8080/8085 Assembly Language Programming Manual, Inte! Corpo-
artion, 3065 Bowers Avenue, Santa Clara, CA 95051. Order no. 980940,
$13.50.

8080/8085 Software Design, Book I, by Christopher A. Titus, David
G. Larsen, and Jonathon A. Titus, Howard W. Sams & Co., Inc. 4300
West 62nd St. Indianapolis, Indiana 46268, 1978, ISBN 0-672-21541-
1. $12.95.

8080/ 8085 Software Design, Book 2, by Christopher A. Titus, David
G. Larsen, and Jonathon A, Titus, Howard W, Sams & Co., Inc. 4300
West 62nd St. Indianapolis, Indiana 46268, 1978, ISBN 0-672-21615-
9. $12.95.

8080A-8085 Assembly Language Programming by Lance A. Leventhal,
Osborne/ McGraw-Hill, Berkeley, California, 1978, ISBN 0-93]988-
10-1. 518,95

8080/8085 Assembly Language Subroutines by Lance A. Leventhal,
Winthrop Saville, Osborne/ McGraw-Hill, 2600 Tenth Street, Berk eley,
California 94710, 1983, ISBN 0-931988-58-6. $17.95.

Memory Index 323

Memory Index

Address Page No. Address Page No.
G009 45 I90F 194
00IE 228 [92F 194
0020 226 1962 194
0024 241, 245, 253 1996 277
002C 234, 241, 245 1999 276
0034 129, 241, 245 19A0 195
003C 241,245 1B32 241
0040-0041 262 IB35 241
035A-036C 277 1B3B 243
036F-03E2 262,277 1BEO 228
051D 103 1ESE 183
0858 44 IFBE 275
8DB 260 220F 274
0C5F 103 22B% 21
OFES 276 2413 211
1069 44 2542 276
113B 226 260B-2656 212
1140 226 27B1 228
11A2 228 200F 276
[2CB 102 2C34 50
13DB 102 2E40 50
1431-1458 57, 241 2EE6 276
1470 183 33DC 44
14A8 210 3469 276
14AA 210 3472 276
14B0-14C0 21t 4222 225
14C1 210 4225 223
14D8-17DB 258 4229 223
17E6 140 4229 225
422D 223 SASE 105
4231 223 SAA9 275

324 Inside the Model 100

.~ Memory Index 325

Address Page No. Address Page No.
4231 225 5AE3 275
4235-426E 224 SB3E 105
427C 227 5B46 105
428A 105 5B68-5B74 71
42A5 105 5B79 105
42A8 105 5BD2 102
438A-43A1 223 SDO0A-5D2B 105
43AF 224 5D64 103
43B2 223 SEI1S 105
43B8-43F9 223 64192 63
4431-4439 224 65C3 276
443R 105 6AC3 57
443F-444A 224 6B61-6B9F 275
4453-44AA 223 6BDB 276
44AF-4537 224 6BE6 276
4548 223 6CA9 277
4548 223 6CD6 272
4548 224 6CEQ 271
454E 224 6CE4 243
457D 243 6CES 142
4584 243 6D3F-6D6C 179, 182
4644 103 6D69 243
4B3F 226 6D6D 141
4B44 44,222 226 6D7E 141
4B55 183 6DAC 129
4BAO 184 6DAC 241
4D59 258 6DE6-6F30 162
5068 260 6E0B 141
5071-5073 259 6EIE 142
516A 103 6E32 142
51A4 105 6E75-6EAG 140
52BB 162 6EAA-6EBS 132
5220 162 6ECB 141
532D 162 6EE5S-6EED 162
5443 105 6EEA 170
54BC 226 6EEF 161
55Cb 258 6EF2 162
55D4 103 6F2C 162
5791 228 6F46 210
5797 271 6F5B 210

Address Page No. Address Page No.

5A58 228 6F5B-6F84 206

5A62 276 6F85-7042 211

5A7C 104 6FDB-7015 205

702A 211 F602 241
7I8E-71B2 167 F605-FC98 277

71F6 243 F62A 262

720D 107 F62B 162
7233-7241 108 F639-F63E 222,227
7242 101 F63D 105

726D 243 F648 222

7270 102 F65B-F65F 141

7283 102 F674 {83

729F 205 F675 222,226, 228
72C5 172 F685 103
72C5-7303 171 F788 222

7304 259 F923-F92E 195

7326 259 F962-FA74 272
7329-7390 195, 196 FO9BD-F9C2 262
7383-7390 190, 191 FAAE 34, 86, 161
TIEA 243 FABE 254

T3EE 218 FADA-FB39 44, 260
T40F 210 FBOC-FB12 260

743E 243 FB1A-FB26 258
744C-744D 226 FB2§ 259
7657-767C 169 FB28-FB29 260

765C 242,243 FB2A 2359

7662 168 FB2C 260

7662 223 FB2E-FR3(259
7676-767C 168, 205 FB39 44
767D-770A 259 FBB2 273
7711-7BF0 218 FC93-FC98 274

78F1 218 FCCo 222
7BF1-7CF8 105 FDFF 222
TCF9-7D06 108 FEOO-FF40 217,222,279
7D07 108 FF40-FFFD 222,272
TDOB-7D10 107 FF41 142

7D 1B-7TD2F 108 FF42 140, 141, 142
7D33 44 FF44 162, 170, 205
TD44 99 Fr45 84, 191, 208, 260
7D46-7TDAC 160 FF8B 140

TFD6 44, 45

326 Inside the Model 100
Address Page No.

7FF3 45, 260
EQ00-EOFF 272
F5F0-F602 254,277
FSF9 234, 241
FSFC 129, 241, 244
F5FF 192, 241

Alphabetical Index 327

Alphabetical Index

A

A register

AC register

AC adaptor

AC flag
accumulator

ACI opcode
acoustic coupler
ACP/DIR switch
ADC opcode
ADD opcode
add-with-carry
address decoder
ADI opcode

AF register

ALC

ANA opcode
AND opcode
ANI opcode
ANS/ORIG switch
answer mode
arrow key

ASCII code
assembler
assertion, RS-232
asynchronous

3

46
254
32

3

47
157
88, 133
47

46

47

82

46

31
208
52
31, 52
52

88
147
108
130, 281
26
136
120

automatic level control 208

auxiliary carry flag

B

B register

BA files

backup power
Bar Code Reader
baud rate
Baudot code
Baudot, JM.E,
BAUDST routine
BC register

BCD code

32, 46

3t

273

248

231

118, 121, 279
130

121

140

31,33

46, 49

BCR signal

BCR hook

BEEP command
beeper

BEGLCD routine
Bell 103

bit

bit time

block moves
BRKCHK routine
Buck, Alan
buffer, keyboard
bus, parallel
BUSY signal
BUSYNOT signal
byte

C

C flag

C register
calendar

CALL
CARDET routine
carry flag
CASIN routine
Cassette

CC opcode
CCF opcode
CCITT standard
CD signal

Centronics standard

character length
selection

CHGET routine
CHXDC routine
CHSNS routine
CL/AS signal
CLEAR command

CLOADM command

clock

82, 87,231,245
277

132, 163, 225
205

222

144

25

126

276

102

19

101, 103

L7

87

87

25

46

3
187
41,42, 68
le6l
31,32
211
199
42

56

148
133
£75

123
102
275

102
133

64

67, 200
[87

328 Inside the Model 100

v Alphabetical Index 329

CLRFNK routine 103 CSOUT routine 210 discharge memory 248 F

CLS routine 225 CSRX, CSRY routine 222 disk 1/0 259 F register 31,32
CLSI, CLS2 signal 123 CTOFF, CTON DISP control 217 f-string 104
CLSCOM routine 141 routine 210 DO files 273 F6, F7 Telcom key 260
CM opcode 42 CTS signal 87, 133, 137 DR signal 82, 126, 245 FC error 45
CMA opcode 56 CTSR signal 133 DSPFNK routine 105 FCC certification 152
CMC opcode 56 CUROFF routine 224 DSR signal 87,133, 137 FE signal, error 129
CMOS 79 current loop 147 DSRR signai 133 Find 21
CMP opcode 53 CURSON routine 224 DTMF 148 flag register 31
CMT device 201 cursor keys 108 DTR signal 88, 133, 137 FNKSB routine 105
CNI-9 89 CY flag 32,46 DTRR signal 87 framing error 129
CN2 236 cycles 33 FRE function 64
CN3 202 CZ opcode 43 E frequency-shift keying 144
CN4 266 E register 3 FSK 144
CN7 84 D EBCDIC code 130 function 60
CN9 254 D register 31 El opcode 57

CNC opcode 42 DAA opcode 46, 50 EIA standard 135 G

CNZ OPCOdC 43 DAD opcode 50 8080 18, 33,52, 73 gaps 14
CO files 68,274 data received 126 8080 mnemeonic 33 GOTO command 24
CODE keys 105 DATAIN, 81C55 86 GRPH keys 105
command processing 277 DATAOUT signal &7 electret condenser GTXTTB routine 275
comparison 53 DATAR routine 211 microphone 159

complement 56 DATAW routine 210 ; Electronic Industries H

complement carry flag 57 DATE, DAY routine 194 o Ass’n 135 H register 31
conditional calls 42 DB connectors 135 : end address, endadd 66, 200 HALT opcode 57
conditional execution 41 DCR opcode 49 ENDLCD routine 222 handshaking 135, 137
CONN routine 162 DCX opcode 50, 51 ENTREV routine 224 Hayashi 273
connectors 89 DE register 31,33 entry address 66 hexadecimal 25
CP opcode 42,53 DEC opcode 49 51 EPE signal 123 hexadecimal

CP/TL signal 133 decimal 25 ERAEOL routine 224 conversion 276
CPE opcode 42 decoder, address 82 ERAFNK routine 105 high-order part 33,62
CPI opcede 53 decrement 49, 50 ESCA routine 225 HIMEM function 64, 277
CPL opcode 56 DELLIN routine 224 Escape sequences, HL register 31,33
CPO opcode 43 denial, RS-232 136 LCD 223 HLT opcode 57
CPU chip 22, 81 dextrose 216 Escape-Y sequence 227 HOME routine 773
CRL signal 124 DI opcode 57 EX (SP),HL opcode 40 hookswitch 151
CRLF routine 225 DIAL routine 161, 162 EX DE,HL opcode 39

cross-assembler 17,79 DIR/ACP switch 144, 157 expansion bus 262 i

CRT device 257 direct addressing 37 expression 60

crystals, generally 50 direct-connect 149 EXTREYV routine 224 {éoo p:;ilse 23’686
crystal X1 188 directory 278 P

crystal X2 33,125 disabling interrupts 242

CSAVEM command 66, 200 DISC routine 162

330 Inside the Model 100

1M 6402 chip
immediate move
IN opcode

INC opcode
increment
indirect addressing
INITIO routine
INKEY$ function
INLIN routine
INP function
input ports

INR opcode
INSCHR routine
INSLIN routine
interrupts

INTR signal

INX opcode
INZCOM routine
1QINIT routine

dJ

jamming

JC opcode
JM opcode
JMP opcode

121
36
37,59
49, 51
49, 50
36
272
104
103
39, 62
62

45
275
224
239
82,245
50, 31
140
271

43
41
41
40, 41

JINC, JNZ, JP opcode 41

JP (HL) opcode
JPE, JPO opcode
jump

JZ opcode

K

KBCHAR routine
KBLINE routine
keyboard
keyboard buffer
keyboard scanning
KEYX routine
KILASC routine
Kreindler, Lee
KYREAD routine

45
41
24
4]

102
103
93
103
96
102
275
19
101

L

L register

label line

last-in first-out
1.CD routine
LCOPY command
LD opcode

LDA, LDAX opcode

leader, tape
LFILES command
LHLD opcode
LIFO

Liljedahl, Harold
LINE command
LIST, LLIST
command

load opecode
LOADM command
LOC function
LOCK routine
LOF function
Low Battery lamp
low-order portion
low-power signal

lowercase conversion

LPOS function
LPS signal
LPS hook

1.X1 opcode

M

M1l chip
M12 chip
M 14 chip
M15 chip
M18 chip
M22 chip
M23 chip
M24 chip
M25 chip
M35 chip

31

103

33
215,222
183, 217
33, 36, 37
37

208

260

38

33

19

218

226
33,36
67, 200
259

224

259

184, 252
33,62
130, 252
276

182, 278
240, 245
277

33

80

80

34

84

188
84, 121
84

84

84

140

Alphabetical Index 33t

M36 chip
MAKHOL routine
MAKTXT routine
marking
MASDEL routine
masking interrupts
MAXRAM function
MC14412 chip
memeory map
memory power
MENU routine
menu selection
microphone
mnemonics

Model I, HI, 1V
modem

motor control
MOV opcode
move apcode
multiplexer
MUSIC routine
MVI opcode

N

nicad, nickel-cadmium

no-op, NOP opcode
null modem
NUMS keys

0

OE signal, error
off-hook

ON ... GOSUB
command
on-hook
ON...GOTO
command
opcodes
operating system
option ROM
optocoupler
OR opcode
ORA opcode

84
275
274
147
275
242
63
155
27, 81
248
271
68
159
33,74
18
117, 143
208
33,36
33,36
118, 132, 144
171
37

248
57

137
108

129
148

244
148

44, 45
24, 74
24

80, 278
236
51,52
52

ORI opcode
ORIG/ANS switch
originate

OTI

o012

QUT opcode
output port
OVerrun error

P

P flag

parallel bus
parity error
parity flag
parity, UART
Paste buffer

PC register
PCH]I. opcode
PCS signal

PE signal, error
PEEK function
Pl signal
Piezoelectric effect
PIO chip

PIO timer

pixel

PLOT routine
PNOTAB routine
POKE command
Polaroid

polling

POP opcode
port map

ports, 1/O

POS column
POSIT routine
power control
power supply

pps flag
PRESET command
Printer

PRINTR routine
program counter

52

133, 144, 153
147

144, 149, 157
248

37, 59,63

63

129

32

117, 118
129

32

123

278

33

45
87,241, 253
129

60, 274
123

163

86

125, 171
215
218, 226
183

60, 61,274
215

234

39

85

86

278

227

132

247

278

217

175

182

33

332 Inside the Model 100

PRTLCD routine
PRTTAB routine
PSET command
pseudo-ASCIi
PSW

PUSH opcode

R

RAL, RAR opcode
RBR

RC opcode

RCVX routine
receiver

receiver buffer
register

receiver register

receiver register clock
receiver register input

register indirect
addressing
registers
relative jumps
relays

REMI1, REM2 signal

REMOTE signal
REN

reset

RESET*

restart

RET opcode
return

RIM opcode

ring pulse

ring signal

ringer equivalence
number

RLA, RLC, RL.CA
opcode

RM, RNC, RNZ
opcode

Robbie, Gerald
rotate

RP signal

183
183
217
100
40
39

54
121
43
141
118

121
121
121
121

37

31,33

70

90

210

89

149

31, 44, 253
253

43

42,43

42
57,205, 234
129, 266
148

149
54
43

19
54

43, 88, 129, 151

RPE, RPO opcode
RR register

RRA, RRC opcode
RRC signal
RRCA opcode
RRI signal

RS 232 port

RS 232C standard
RS$232C signal
RST opcode

RST 3 opcode
RST 4 opcode
RST 5.5 opcode
RST 6.5 opcode
RST 7.5 opcode
RSTSYS routine
RTS signal

RTSM signal
RTSR signal
RV232C routine
RXC signal
RXCAR signal
RXD, RXDB signal
RXM signal

RXMD, RXMe signal

RXMi signal
RXR signal
RYI

RY2

RY3

RZ opcode

S

S flag

SAVEM command
SBB opcode

SBC opcode

SBI opcode

SBS signal

SCF opcode
S$D232C routine
SENDCQ routine
SENDCS routine

43

121

54, 87

121

54

121, 133
17

135

87

43, 44, 45
277

183, 226
82, 231, 245
82, 126, 245
82, 192, 245
224

88, 133, 137
133

133

141

202

133, 153
231

133

151

153

133

208

149, 151
151

43

32
66
48
48
48
123
56
142
141
142

Alphabetical Index 333

serial bus

set

set carry flag
SETSER routine
SETSYS routine
shift

SHIFT keys
SHLD opcode
SID signal

sign flag

SIM opcode

sixteen-bit arithmetic

sixteen-bit transfers
SNDCOM *6E3A
SOD signal
SOUND command
SP register

space

SPHL opcode
STA opcode

stack operations
stack pointer
stadd

start address

start bit

Stat setting

STAX opcode
STB signal

STC opcode
STDSPF routine
STFNK routine
stop bit

stop bit select
STROBE signal
strobe, printer
STROM signal
SUB opcode
subroutines
subtract

subtract immediate
SUI opcode
Suzuki

Swi

117
31
57
140
224
76
105
38

56, 82, 201, 246

32
37,205, 234
50
38

82, 201, 245
163, 172, 279
31,33
147

40

37

39

33

200

66

120

141, 278
37

89

56

105

104

120

123

89

i

89

48

41

48

48

48

273

90

N~

Sw2

SW3

Sw4

SW5

switches
SYNCR routine
SYNCW routine

T

TBR

TBRE signal
TELCOM

teletype

TEXT

TIME routine

tip signal

TL

Touch-Tone

TP signal

TP hook

TR

transfer address
transmitter
transmitter buffer
register
transmitter buffer
register empty
transmitter receiver
ciock

transmitter register
transmitter register
output

TRAP signal

TRC signal

TRO signal
TRS-80 Modei I, 111,
v

TS

turn bit off, on

TX signal

TXC signal

TXM signal
TXMD signal

157
252
gt
90
90
211
210

118
126
21

147
21

194
148
151
148

82, 192, 241, 245

277
118
66

118

118
126

121
[18

121

240, 245, 253
87, 121

121, 133

18

87
31,52,53
157

203

133

151

334

inside the Modei 100

TXMe signal
TXMi signal
TXR signal

U

UART

UART DR hook
UART interrupt
universal
UNLOCK routine
UNPLOT routine
unused pins

v

VARPTR function
VB power
VDCHAR routine
VDCLS routine

w

WAND device
word

X

X1 crystal

X2 crystal
XCHG opcode
XON/XOFF
XOR opcode
XRA opcode
XRI1 opcode
XTHL opecode

Y
Y0-Y7 signals

Z

Z flag

Z30

Z80 mnemonics
zero flag

151
157
133

117
271
241
120
224
218, 226
259

68

188
222
225

257
118

188

125

39

130, 132, 140, 279
51, 52

52

52

40

59,62,86

32
18,33, 73
3
32

1540

