inside The
TRS-80° Modei 100

by
Carl Oppedahl

Weber Systems, Inc.
Cleveland, Ohio

The authors have exercised due care in the preparation of this book and
the programs contained init. The authors and the publisher make no warran-
ties either express or implied with regard to the information and programs
contained in this book. Inno event shall the authors oF publisher be liable for
incidental or consequential damages arising out of the furnishing, perfor-

mance, or use of this book and/or its programs.

Touch-Tone® isa registered trademark of AT&'T; Epson®, MX-B)™isa registered trade-
mark of Epson Corporation; Polaroid is a trademark of Polaroid Corporation; TRS-80®
Model 100 is trademark of Radio Shack division of Tandy Carporation; Teletype™ is 2
trademark of Teletype Corporation; Telex™ is a trademark of Telex Communications,

Ine.; Z80™ s a trademark of Zilog Corporation.

Published by:

Weber Systems, Inc.
8437 Mayfield Road
Chesterland, Ohio 44026

For information on trans
United States, please contact WwSiatt

Inside the TRS-80¢ Model 100

Copyright® 1985 by Weber Systems, In
International and Pan-American Copyright Conventions.
States of America. No part of this publication may be reproduced, stored ina

vetrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopy, recording, or otherwise without the prior written

permission of the publisher.

lations and book distributors outside of the
he above address.

c. All rights reserved under
Printed in United

Library of Congress Cataloging in Publication
Main entry under title:
Inside the TRS-80® Model 100

Includes index

1. TR5-80 Model 160 (Computer) I. Title.
QA76.8.T1845606 1985 001.04 §5-11560
ISBN 0-938862-31-6

_”""\Q{Mﬁ@"”“;"@

1588

%m&

Lo

=
Contents
Preface
1. Introduction to The Model 100 :127
Why Machine Language Pregramming? ?
What is Machine Language?. -
The CPU "
Hexadecimal Notation e
The Opcode instruction Set 25
Assemblers ”
2. Assembly Programming o
Architecture P
The Accumulator and the Flag Register "
The Gther Registers 22
Clock Frequency and Execution Speed 2
The Cpcodes "
Memory Moves e
Cther Eight-bit Moves o
Sixteen-bit Data Transfers .
Stack Operations 2
Branch Instructions 0
Subroutine Calls .
Conditional Calls and Returns :
Restart Instructions 4
Another Jump Instruction p

45

Arthmetic Functions

Addition with Carry

Subtraction

Eight-bit Increments and Decrements

Binary-Code Decimal Operations

Sixteen-bit Arithmetic.

Logical Operations

Turning a Bit On

Turning a Bit Off

Testing a Register Pair for Zero

Comparison Operations

Rotate instructions

Uses for the Rotate Instructions

Other Logical Instructions

The Carry Fiag

Machine Control Instructions

3. Advanced BASIC

PEEK

POKE

input Ports

Allocating RAM-The Maxram and Himem Values

Himem

SAVEM,CSAVEM

LOADM AND CLOADM

VARPTR

CALL

Manu Selections of CO Files

Battle of the CO Files

Poking into Protected Memory

4. Borrowing From Z80 Experience
Differences Between the Z80 and 80C85 Instruction Sets

5. Understanding the Hardware of the Model 100 ——

46
47
48
49
49
50
51.
52
53
53
53
54
56
56
57
57
59
60
61
62
63
64
66
67
68
68
69
70
70
73
73
79
80

Memory Locations

B6

The Poris

89

Connections in the Mode! 100

93

6. The Keyboard

93

Hardware Theory of Operation

96

Keyboard Scanning

99

Multipie-Use Ports

100

Keyboard ROM Calls

Keybeoard input RCM Routines

Label Lines and Function Keys

PG
163

ROM Keyboard Scanning

105

Decoding of Function Keys

106

Decoding the Directional Arrows

Nums Decoding

106

Arriving At A Particular INKEYS Value

108
108

7. UART Operation and the RS-232 Interface

Paratiel and Serial Data

117

Converting From Parallet Data To Serial Data

117
118

What is a UART?

Timing

118

The Inner Workings of the UART

120

CPU Communication with the UART

121
123

Serial WORD Configuration

Setting the BAUD Rate

123
125

Serial Transmission

Serial Data Reception

126
126

Data Reception Errors

129

Significance of ASCH Code

130

The Beeper

ASCI Protocol — XON/XOFF

132
132

Mode Selection:RS-232 and Modem

132

The RS8-232 Standard

135

Mechanical Requirements

135

Electrical Reguirements

135

Data Flow

137

Handshaking Signals

137

How The RS-232 Interface Works

138

Receiving RS-232 Data

138

Transmitting RS-232 Data

140

Putlished RCM Subroutines

140

8. The Telephone Modem

Data Flow Overview

143
143

The Beil 103 Standard

144

The Audio Frequencies

147

How Telephones Work

148

The Telephone Wires

148

Electrical Considerations

148

Placing Telephone Calls

148

Answering Telephone Calls

149

Ringer Equivalence

149

The Direct-Connect Modem And The Telephene Transformer OT1 149
Ring Pause 152
FCC Certification 152
Modem Data Flow 153
The Modem Receiver 153
Outgoing Data Path 157
Acoustically-Coupled Modem 157
Use Of The Coupter. 159
Dialing Procedures With The Coupler 159
170 Ports 161
ROM Subroutines 161
9. Piezoelectric Beeper 163
How Piezo Beepers Work 163
Hardware Theory of Operation 166
CPU Toggling 168
PLO Timer Use 171
Musical Tones 172
10. The Printer Interface 175
Mechanical Reguirements 175
Eilectrical Requirements 177
Software Characteristics 177
Modet 100 Printer Hardware 178
Haw the ROM Prints Characters 179
Fancier Print Routines 182
ROM Caiis to the Printer 182
PRINTR 182
PRTLCD 183
PRTTAB 183
Printing to Dot-Addressable Graphic Priniers 183
Unpublished ROM Routines 183
The Low Battery Light 184
11. Clock/Calendar 187
Terminology 187
Hardware Theory of Operation 188
Setting The Time In The Clock/Calendar 190
Strobing The Clock/Calendar 191
Reading The Time 193
Selecting a TP Freguency 193
Clock/Calendar Accuracy 198
Published ROM Routines 198
Unpublished Routines 199
199

Setting The Time Through ROM Calis

12. Cassette Input and Qutput

Accessing Data {DO) Tape Files From BASIC

201
202

Creating a CO Cassette Fiie

202

Loading a CO File Back into RAM

202

Accessing BA Tape Fites From BASIC

203

Hardware Theory of Cassette Operation

203

Incoming Cassette Data Flow

204

Reading the Data at the SID Terminat

206

Outgoing Cassetie Data Flow

The CPU’s Role

207
207

Hardware Treatment of the SGD Signal
Interrupts

207

Maotor Control

209

Published ROM Subroutine Calls

209
210

Writing to Cassette

210

Reading from Cassette

21

Unpubtlished Routines

File Formats

211%

User Experimentation

13. The Liquid-Crystal Display Screen
How Liquid Crystals Work

212
212

215
215

CPU Control of the Screen

217

Character Formation

217

Formation of Character Shapes

218

RAM Locations Relating to the Display

223

Published ROM Subroutine Calls

223

How To Send Special Characters

226

Sending Characters to the Printer

How to Call 4B44

Other Published LCD ROM Routines

Cursor Position Routines

Unpublished ROM Routines for the LCD

14. The Bar Code Reader

Determiring When To Start Reading a Bar Code
Handling The Interrupt

227
227
227
228
229
231

232

FPolling The Bar Code Reader

Reading The Bar Code

234
234
235

Using The BCR Cennector for Purposes Other Than Reading Bar Codes.. 236

15. Interrupts

239

Interrupt Priorities 242
Masking and Disabling of interrupts 242
Uses for the RIM Instruction 244
16. The Power Supply 247
The DC-to-DC Converter 249
Memory Power 249
Low-Power Signals 252
Reset Circuitry 253
Powering Up The GPU 254
The AC Adapter 254
Alternative Power Supply 256
17. Expansions 257
The Bar-Code Reader and CRT 257
Unused Pins 25%9
Disk input/Output 259
ROM Routines For Bulk Data Transfer 259
Record I/O 259
Listing Files To The Printer 280
Function Keys in Teicom Term Mode 260
Understanding the Option ROM Socket 260
Expansion Bus Socket 262
Memory Access At The Expansion Connector 263
Address Decoding 264
Adding Ports to the Model 100 264
Paraliel Port Input 264
Parailel Port Output 266
interrupts at the Connactor. 266
The Telephone Ring Pulse Input 266
Theory of Operation- 266
18. The Remainder of ROM 27
Pubiished ROM Initializatiion Routines 271
Published RAM File-Handling Routines 272
Suzuki and Hayash 273
DO Files 273
BA File Format 273
Biock Moves 276
Lowercase Conversion 276
Converting Numerical Hex to ASCIl 276
Converting Two Numerical Hex Bytes to ASCII 277
Register-Pair Comparsion 277

Utility For Command Decoding

RAM Variabie Map

Appendix A. Nonprintable Characters and Assignments__ 281
283

Appendix B. ROM Map

Appendix C. 8080, 8085, Z80 Opcodes
Appendix D. Bibliography

Memory Index

Alphabetical Index

295
321
323
327

|

]
i]
¥
i
e
E
i

Profacoe

How To Use This Book

This book is intended for several readers: those who wish to do
machine language programming; those who wish to do sophisticated
BASIC programming; and those who wish simply to understand how
the Model 100 works inside,

Understanding the Mode! 100

Some Madel 100 owners are reasonably content using existing
software, and so do not really have programming in mind. For these
readers, it is my hope that this book will do two things: provide an
explanation of how the computer “really works inside™ and perhaps
arouse a little curiousity about the interesting world of machine lan-
guage programming. [t is possibie to read the entire book from front to
© back without assembling a single opcode, or typing RUNM even once.
- Along the way you may stil! find yourself asking *1 wonder how they

~dothat?” If even once you can say, “Ah, now | see how it is done,” then
this book will have fulfiiled its purpose.
17

18 Inside the TR$-80 Model 100

Doing Machine Language Programming

For those who wish to do machine language programming, the
course of study depends on your previous experience with machine
language.

If you have never programmed in machine language before, you
should first become reasonably familiar with Model 100 BASIC,
including such statements as OPEN, LINEINPUT#I, PRINT#I. You
should also learn to use TEXT, the Model 100 word-processing
program.

Then read this book starting from the very beginning, skipping
only chapter 4. If you fecl comfortable with the subjects covered up to
and including chapter 5, then proceed with the rest of the book. You
will be able to do almost anything you want with the Model 100.

You may find, after reading those chapters, that you need a more
general introduction to microprocessors; a list of suggested books
appears in the appendices.

[f you have programmed in machine language, whether on
another microprocessor or on a large computer, you will be able to
start right in with chapters 2 and 3, which introduce the 8085 CPU used
in the Model 100. Proceed to chapter 5 which describes the hardware
and from there read to the end of the book.

If your previous experience is with one or more processors in the
8080 family, you should have no difficulty starting right in with chapter
5. Those whose first computer was a TRS-80 Model I, I1I, or 1V, and
who thus know about the Z80 will want to read chapter 4 closely, as it
tells how to use Z80 experience and programming aids on the Model
100.

Advanced BASIC Programming

Some readers have mastered everything in the Model 100 owner’s
manual, including the complete BASIC command vocabulary. Many
want to do more, but do not want to learn to do machine program-
ming. The coverage in the owner’s manual is sparse, at best. regarding
such commands as PEEK, POKE, INP, and OUT, CALL, RUNM,
and the like. This book explains the internal features of the Model 100
that may be accessed and controlled through these commands.

SR R wmmxw e

Preftace 19

If your BASIC programming goal relates to a particular part of
the computer, say, the clock/calendar integrated circuit, you may go
directly to the chapter on that subject. This chapter describes ways to
use the CALL, INP, OUT, PEEK. and POKFE commands to perform
task, which cannot be accomplished using the common BASIC
commands.

Forasurvey of the many hardware areas which may be controlled
with INP and OU'T commands, read chapter 5.

Corrections and suggestions for improvement are weicomed, and
should be sent to the author.

About The Author

Carl Oppedahl, a lawyer specializing in technological litigation, 1§
a regular contributor to Portable 100/200 and PCM magazines. He
holds & bachelor’s degree in physics and mathematics from Grinnell
College and a law degree from Harvard University. He is an associate
with the New York law firm of Kreindler & Kreindler.

Acknowledgements

The author would like to thank Alan Buck, whose unselfish
efforts brought the world of computer programming to hundreds of
high school students a decade before it was fashionable to do so;
Harold Liljedahl, who taught me that when reassembling equipment !
should put all the screws in part way before tightening them; Gerald
Robbie, who taught me most of what | know about writing; and Lee
Kreindler, whose encouragement and support suffice to make almost
anything possible,

INnfroduction

Why Machine Language Programming?

The Microsoft BASIC and the nice TEXT and TELCOM pro-
grams provided with the Model 100 allow you to undertake an incredi-
ble range of programming tasks, Custom software from other suppli-
ersallows one to do almost anything, without having to learn machine
language or study opcodes.

Why, then, learn machine language? Machine language is fast-
often ten times faster than an equivalent BASIC program, and more
compact. If TEXT and TELCOM had been written in BASIC rather
than machine language, they would have taken up at least three times
the 6.5K they presently occupy in ROM.

The TEXT program, if written in BASIC, would require four
minutes for a simple “Find™ search in a large file; in machine language
it takes less than fifteen seconds.

21

22 |nside the TRS-80 Model 100 ST T T R R e e e e e T T T T e T T S s e infroduction 23

The TELCOM program simply had to be written in machine
.. . > >
language; when characters are arriving at the rate of thirty or more per wE Gk
. . oE gE
second and a download to RAM and printer echo are occurring, ;é § %é
. = o
BASIC simply cannot keep up. Blieg avo
Fast-action games are painfully slow in BASIC; exciting graphics - 5 ™ =
. - . o =
and sound are possible only in machine language. W g — C:) k 2 b
. Zz 0 o A = =) ng
These are some of the reasones people learn to program 1n £E by o g 83
. L x a0
machine language. 9
D
o
What is Machine Language? = &
-
. .. : . 85 C
Machine language is just what is sounds like, the language used Sa
within the machine. Actually computers are always executing machine _
language “deep down inside™, even when we think of them as executing = § e
=2
BASIC, or FORTRAN, or whatever. 22 . 3 5
The Model 180 computer contains a microprocessor, sometimes g A bozd 5 Q 33
. . oo™
called a CPU (for central processor unit), and a variety of memory and 2% f E
[/0 (input and output) devices, as shown in figure [.1. @ 3 5
oy < -
D pe | 2% 3
o] woS el aa ~
om i] = z%
23 g 25
o0 <
I D 22
g ox& &
ol =G =
x T bt
o w =
(200 o i
X g
- > <
#3 & o
q& =
(S &) B
g
=]
a %gf) =
S @9 .
Q -
Z3 ::> @ g % -
@ 3
= SHHEE
rd s
[+
g e I i I ¥ I -
LQwN x | v | x| x
omrm [r:+] | 5] | @ | w©

24 Inside the TRS-80 Model 100

The CPU can communicate directly with the cassette connector;
can use the memory bus to store and retrieve information; and canuse
the input/ output (I/ O) bus to control and exchange information with
a variety of devices, including the keyboard, the liquid-crystal display
(LCD) screen, a printer, the telephone line, or any RS-232 device.

That is ail fine and good, but how does it really work? For
example, when the power is turned on, what exactly happens to result
in the time, date and file menu being displayed? When one moves the
cursor to one of the file names, and pushes ENTER, what exactly
happens?

The answer to such questions lie in an understanding of the way
the CPU deals with the circuitry around it, and in a knowiedge of the
ROM operating system.

The inner workings of the CPU and the operating system provide
a background that is presently throughout this book, regardless of the
device named in the title of particular chapter.

The CPU

The CPU executes instructions called “opcodes”, which are made
available to the CPU in memory locations. When power is turned on,
the CPU goes to the opcode located at memory location 0000. As it
happens, the designers of the Model 100 set up the hardware so that
memory location 0000 is in read-only memory (ROM).

Memory location 0000 contains the hexadecimal value C3, or 195
decimal. (You can see this by typing PRINT PEEK (0) while in
BASIC))

The 8085 CPU is designed so that when it encounters the value C3,
it prepares to “jump”, which means that instead of proceeding with the
opcode after C3, it proceeds with an opcode elsewhere in memory. The
next two storage locations contain information used by the CPU to
figure out where it wili jump to. (The jump instruction is analogous to
the GOTO command in BASIC.)

The next two locations contain 33 hexadecimal (51 decimal) and
7D hexadecimal (125 decimal). The CPU takes the 33 and 7D groups
them as 7D33, and jumps to 7D33.

infroduction 25

Hexadecimal Notation

This is as good a time as any to introduce hexadecimal notation.
Most addresses, port numbers, and register contents (all defined later)
will be given in hexadecimal, usually calied “hex”, notation. The
reason is that everything in the Model 100 (and indeed everything in
every microcomputer) is represented by 1’s and 0’s usually in groups of
eight called “bytes™.

Each bytes is capable of assuming 256 different values, since there
are 256 possible combinations of “1”and “0”. Sometimes the value of a
particular byte is conveyed with a decimal numberfrom 0 to 255, using
a convention assigning decimal values to the individual I's and 0%,
which are called “bits".

For exampie, the eight-bit value 01110001 has a decimal value of
113, arrived at in this fashion:

(0x128)+ (1x 64+ {1x32)+ (I1x1B) + (0OxB)+ {Ox4)+(0x2)+ (1x1)

The numbers 128, 64, and so on are powers of two: 128 is two raised to
the seventh power, 64 is two raised to the sixth power, and so on, The
“07 bit which was multiplied with 128 is thus often referred to as “bit 77,
the “1™ which was multiplied with 64 is called “bit 6™, and so on.

This describes the relation between binary numbers and decimal
(base ten) numbers. The connection with hexadecimal is as follows: a
group of four bits is matched up with & letter or numerical digit, so that
a group of eight bits is matched with a two-letter (or two-digit)
combination.

26 Inside the TRS-80 Model 100

The four-bit values are:

Binary Hex
0000
000t
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

mm OO @P e e ~Ned MW = QO

Using this correspondence, the binary value 01110001 translates
to 71 hex.

The Opcode Instruction Set

As mentioned above, the 8085 executes opcodes. Thus far, only
one opcode has been mentioned, the C3 opcode which means “pump™.
By the end of chapter 2, the other opcodes which the 8085 is willing to
execute will have been discussed. These include instructions which
cause information to be moved from one place to another (the equival-
ent of LET A=B); which will test for presence of certain conditions and
then jump (the equivalent of 1F statements); and which add or subtract
integers.

Assemblers

Each opcode is an eight-bit byte, and in some cases the one or two
bytes following the opcode also form part of an instruction. The two

infroduction 27

bytes following the “C3” discussed above give an example of the latter.
Thus an instruction may be one, two, or three bytes long.

The bottom 32,768 (decimal) Model 100 memory locations, which
are in ROM (running from 0000 to 7FFF), together with the top 2574
(decimal) memory locations, which are in RAM (running from F5F0
to FFFF), are filled with opcodes and related data placed there by
Microsoft. Those opcodes, which may be grouped into subroutines
and programs, make possible the menu that will be displayed when you
turn on the machine as well as the events which occur when you runthe
applications programs.

The allocation of memory is shown to scale in figure 1.2,

0000 ~
BAS!C
ROM
5146
TELCOM
5B68
SCHEDULE, ADDRESS
SDEE
TEXT
6CEQ
HARDWARE
DEPENDENT
ROUTINES
8000 ~
BA FILES
DO FILES
€O FILES
RAM
BASIC
VARIABLES
Figure 1.2. Memory
Map
HIMEM

LJSER PROTECTED AREA
F3FC

OPERATING SYSTEM

28 inside the TRS-80 Modei 100

When Microsoft developed the opcodes, they were doing machine
language programming. You may be sure they did not start by creating
a list of hex opcodes and running these. Instead, they followed a
development process involving flowcharts, mnemonics, and a variety
of programming aids such as assemblers, debuggers and disassemblers,

2

Assembly Programming

Architecture

The 8085 CPU is composed of several parts, as shown in figure
2.1. Signals enter and exit from the CPU at the locations shown in the
fipure. Sixteen wires are available for selecting which of the 65536
memory addresses is being referred to. Eight of the wires are also used
for incoming and outgoing data. The signals shown across the top of
the figure have to do with serial input and output, and interrupts,
discussed in detail in chapters 12 and 135, respectively. Timing and
control signals shown at the bottom of the figure, let the CPU deter-
mine whether input or output will occur, and whether the input or
output will take place in port space or address space.

29

30 Inside the TRS-80 Model 100 ; Assembly Programming 31
Within the CPU, various registers contain ones and zeros. These
] T .
Y] can be manipulated by the programmer through selected opcodes. The
v . a < registers that are used most oftenarethe A, B,C, D, E, F, H, L., SP,and
g @ g -
o a Qg S PC reglsters.- - ‘ ‘ o
§§ g e The registers designated by a single letter are eight bits in size,
2 58 while those designated by two letters are sixteen bits in size. Consistent
ot - e with this convention, the eight-bit registers may be paired up, creating
s |z ls |2 |¢ |z@ the AF, BC, DE, and HL registers, often called register pairs,
o Py o) © o |2 wd .
2" 2 OE jwE | E| F % (3 N) The Accumulator and the Flag Register
— - o =
z AT S : -
b <::> PR S Tz et ' 4 :2 w The A register, also called the accumulator, is probably the most
= L o o x [Lt ' B . .
- - " T N 3 é 2 & o § g frequently used of the 8083 registers. Most of the other registers cannot
3 © I k-7 i . . .
z o |o¥|c¥| 71 & 2¢ N . be used for arithmetic calculations. Only the accumulator has an
O o w x5 o . P .
wo £q arithmetic logic unit {ALU) for addition, subtraction, multiplication,
E 5 § and logical AND and OR functions. Only the accumulator can be
a z3 z e § loaded to and from the input and output ports. Whenever an arith-
! = b ;
° G 0% w F b— - & . metic operation is performed in the accumulator, one or more hits of
= 2 L O 3 <=
2 ¥ ES % dé Y .;ﬁl - the F or flag register will be affected. The Carry flag, for instance, is
w “Uazax . L . ip s .
= z¥ 2858354 N said to have been ser if its new value is one or reset if its new value is
Z I3
= .3 zero.
3 = K s 3 T s Set and reset are also used to refer to individual bits elsewhere in
g — = - . . 3 *
ez Fa 2 s z % the Model 160, including the I/ O ports. “Turn on bit4”, *set bit4,” and
- @ -9 HR - o 1= “ .) . @
A :} o $8z2 g whe3 r‘nakc bit 4 eq.ual to one” are syn.onymous, $o are the terms “turn off
e — o et = R R bit 0,” “reset bit 0,” and “make bit 0 equal to zero.”
A I - " < g BT
i E i
SR o dlos
Z E 14 g ol 130
x] —s Sleg 2
z w S o =
z w 22
£ T
= =
g= B B
3 g <
C:) = =
> o
- g L l @]
»

Figure 2.1.

32 Inside the TRS-80 Model 100

Assembly Programming 33

Fable 2.1. F register

Bit Symbol Meaning

¢ CY Set if a carry resulted from bit 7 during an
addition or a borrow resuited from bit 7
during & subtraction. Otherwise reset.

2 P Set if the parity (number of ones in the
accumuiator} is even, Otherwise reset.

4 AC Set if a carry resulted from bit 3 during an
addition. Otherwise reset.

6 Zz Set if the value in the accumulator is zero.
Otherwise reset.

7 S This is a copy of bit 7 from the accumula-

tor, often used to represent the “sign” of a
smal! integer.

The flags of the F register are laid out as shown intable 2.1, These
flags do not change every time the contents of the accumulator change.
For example, if the Z flag is set, loading & nonzero value into the
accumulator does not, in and of itself, reset it. The flags are set only
during certain arithmetic and logic operations.

The condition of a particular flag is most often used as the
determining factor in a conditional jump. The contents of the flag
register can also be treated as an eight-bit byte and loaded to other
registers through the PUSH and POP instructions.

The Other Registers

The B,C,D,E, H, and L registers can be used as general-purpose
storage locations. Itis easy to move information among them as well as
between them and the accumulator.

In addition, they can be used as register pairs. BC and DE are
general-purpose register pairs, while HL can be used for a variety of
addressing techniques, determining the address in memory to and from
which information can be transferred.

When the HL register is used for this purpose, H contains the
high-order portion of the address (bits 8 through 15), while L contains
the low-order portion {bits 0 to 7).

The PC, or program counter, contains the numerical value of the
address containing the opcode that is currently being executed. Usu-
ally the PC slowly increases by one address at a time, but its value
changes drastically when, for example, a jump instruction is executed.

The SP, or stack pointer, is used whenever subroutine calls and
returns occur. It manages an area of RAM called the stack. As will be
seenin the discussion of the CALL, RET, PUSH and POP instructions,
the stack is a LI1FQ (last-in, first-out) storage device. The design of the
8083 is such that items are placed on the botrom of the stack. As the
stack grows, it grows into lower addresses of RAM,

Clock Frequency and Execution Speed

From time to time, it is interesting to know just how long it takes
for the 8085 to execute an opcode, a subroutine or an entire program.
This is helpful in deciding which of several programming techniques
will be faster, and is crucial in the design of certain routines which
perform time-sensitive input or output functions.

The rate at which the Model 100 executes opcodes is determined
by the crystal frequency provided to the 8085 CPU. Inthe Model 100t
is a 4.9152 Megahertz (cycles per second) crystal designated X2. It
happens that the 8085 divides this frequency by two, yielding 2.4576
MHz, and uses that lower frequency to time the opcodes.

At 2.4576 cyeles per second, each cycle is about 0.407 microse-
conds long. Each opcode requires a specified number of cycles to
complete. These numbers are listed in this chapter. {For those who have
worked with the 8080 or Z80, be careful, as the 8085 cycle times are
sometimes different.) -

The Opcodes

The most often used opcodes are the move or load instruc-
tions, which do just what you might think they would do.

These instructions have the 8080 mnemonic MOV r,1° (for the
word move) and Z8) mnemonic LD r,r’ (for the word load). The 8080

34 Inside the TRS-80 Model 100

and Z80 mnemonics are discussed in detail in chapter 4. In binary, the
opcode is “0lddsss” where ddd is a three-bit representation of the
destination register, and sss is a three-bit representation of the source

register.
The three-bit values are:

111
000
001
010
011
160
101

rITmgOmo>

The opcode 57, or 01010111, causes the contents of the A register
(value 111) to be moved to the D register (value 010). The contents of
the source register are unchanged. The corresponding mnemonics are
MOV D,A and LD D,A.

Seven of the forty-nine possible moves are quite uninteresting,
since they accomplish nothing -- such asa move from D to D or from A
to A for example. The interesting moves are listed in table 2.2. The
MOV instruction requires four clock cycles. This is different from the
8080 which requires five cycles.

Register moves have no effect on the flag register. No single
instruction allows loading to or from the F register.

Assembly Programming 35

Table 2.2. 3085 register moves
8080 Z80
Decimal Hex Mnemonic Mnemonic
120 78 MOV AB LD AR
121 79 MOV A,C LD AC
122 TA MOV A,D LD AD
123 7B MOV AE tDAE
124 7C MOV AH LD AH
125 7D MOV A,L LDAL
71 47 MOV B,A LD B,A
65 41 MOV B,C LD B,C
66 42 MOV B,D LD B,D
67 43 MOV B.E LD BE
68 44 MOV B,H LD B,H
69 45 MOV B,L LD B,L
79 4F MOV C.A LG CA
72 48 MOV C.B LD C,B
74 4A MOV C.D LD CD
75 4B MOV C,E LD CE
76 4C MOV C,H LB CH
77 4D MOV C,L LD CL
87 57 MOV B,A LD DA
80 50 MOV B,B LD DB
81 81 MOV B,C LbDC
83 53 MOV D,E LDDE
84 54 MOV D H LD D,
&85 55 MOV DL LD DL
85 5F MOV E A LD EA
88 58 MOV EB LD EB
89 59 MOV EC LD EC
80 5A MOV ED LD ED
a2 5C MOV EH LD EH
83 50 MOVEL LDEL
103 67 MOV H A LD HA
96 60 MOV H B L.DHB
97 61 MOV H,C LD H,C
98 62 MOV H,D LD H,D
99 63 MOV H,E LD H.E
101 65 MOV H,L LD H,L
111 6F MOV LA LD LA
104 68 MOV |..B LD LB
105 69 MOV L,C LD L,C
106 6A MOV L,D LD L,D
107 6B MOV L,E LD L,E
108 6C MOV L,H LD L,H

36 Inside the TRS-80 Model 100

Memory Moves

One-byte moves of information can also be performed betwecn a
register and any location in memory. The location in memory is
determined or pointed to by the HL register. As a result, the Z80
mnemonic for this instruction includes the symbol (HL}, which means
the location in memory whose address is in HL.,

LDE, (HL)or MOV E,M, where M stands for memory, takes the
contents of the memory location determined by HL and places it in E.
The contents of the source code register or source memory location
remain unchanged. These data transfers require seven clock cycles.

This is an example of so-called indirect addressing, in which the
memory location involved is determined by the contents of a register
pair.

The memory move opcodes take the form “01dddsss” where ddd
or sss are 110 when referring to (HL). Otherwise the memory move
opcodes obtain their value as in the Mov r,r’ instruction above. The
menmonics are listed in table 2.3.

Table 2.3. Moves to and from memory

TTASSEMDN Programiming S

transferis often called immediate, a term which is meant to convey that
the byte comes directly (immediately) from program memory. The
8080 mnemonic“M V1" stands for move immediate. These instructions
appear in table 2.4, In each case the value loaded may be any eight-bit
value, Here and throughout the chapter the expression “FF” will be
used to represent any eight-bit value, and “FFFF” will be used to
represent any sixteen-bit value. Recall that when assembled into
machine code, a value such as 734 becomes 347F in the opcode.

This instruction is analogous to a numerical constantina BASIC
program. Each instruction listed in the table requires seven clock
cycles, except the load to (HL), which requires ten cycles.

Table 2.4. Eight-bit immediate load

8080 Z80
Decimali Hex Mnemonic Mnemonic
126 7E MOV A M LD A, (HL)
70 46 MOV B,M LD B, (HL)
78 4E MOV C M LD C, (HL)
86 56 MOV D,M LD D, {HL)
94 5E MOV EM LD E, (HL)
102 66 MOV HM LD H, (HL)
110 6E MOV LM LD L, (ML)
119 77 MOV M, A LD (HL)A
112 70 MOV M,B LD (HL),B
113 71 MOV M,C D {HL),C
114 72 MOV M,D b (HL),D
115 73 MOV ME D (HL }
116 74 MOV MH D (HL)
117 75 MOV M, L D (HL)

In addition to data transfers in which the source is a register or
memory location, it is possible to load into a register or memory
location from the opcode itself. The eight-bit value to be sent to the
destination is simply the second byte of a two-byte opcode. The data

8080 Z80

Decimal Hex Mnemonic Mnemonic

62 3E FF MVE A FF LD AFF

6 06 FF MVI B,FF LD B,FF

14 OE FF MVI C FF LD CFF

22 16 FF MVI D,FF .0 BFF

30 1E FF MV E,FF LD E.FF

38 26 FF MV H,FF LD H,FF

48 2E FF MVI L.FF LD L,FF

54 36 FF MV M, FF LD {HL),FF

Other Eight-bit Moves

All other eight-bit data transfers are limited to the accumulator as
either source or destination, These transfers are listed in table 2.5.

The LDA and STA instructions are an example of so-called direct
addressing, in which the memory location involved in the transfer is
indicated by the second and third bytes of a three-byte opcode. The
address comes directly from the program being executed. Each takes
thirteen clock cycles.

The STAX and LDAX instructions aliow data transfer to and
from the memory location pointed to by the BC or DE register pair.
This is register indirect addressing. Each instruction requires seven
clock cycles.

The IN and OUT instructions cause an eight-bit word to be
transferred between the accumulator and an input or output port.

38 Inside the TRS-80 Model 100

These instructions are discussed at length in chapter 5. The IN and
OUT instructions also constitute direct addressing, because the port
address involved in the data transfer is determined directly by the
program. Each instruction requires ten cycles.

Assembly Programming 39

Table 2.8, Sixteen-bit data transfers

Table 2.5. Other eight-bit data transfers

8080 Z80
Decimal Hex Mnemonic Mnemonic
58 3AFFFF LDA FFFF LD A,{FFFF)
10 0A LDAX B LD A,(BC)
26 1A LDAX D LD A,(DE)
50 32 FF FF STA FFFF LD (FFFF),A
2 02 STAXB LD (BC}A
18 12 STAX D LD (DE),A
219 DB FF IN FF IN A, (FF)
211 D3 FF QUT FF OQUT {FF),A

8080 Z80
Decimal Hex Mnemonic Mnemonic
42 2A FF FF LHLD FFFF LD HL,(FFFF}
34 22 FF FF SHLD FFFF LD (FFFF),HL
1 0t FF FF LXI B,FFFF LD BC,FFFF
17 11 FF FF LXI D,FFFF LD DE,FFFF
33 21FFFF LXI| H,FFFF LD HL,FFFF
49 31FFFF LX] SP,FFFF LD SP,FFFF

Sixteen-bit Data Transfers

The 8085 instruction set also allows sixteen-bit data transfers, as
listed in table 2.6. The LHLD and SHLD instructions, for load HL
direct and store HL direct, transfer two bytes of information to or from
two adjacent locations in memory. The second and third bytes of the
three-byte instruction determine the memory address to or from which
Lisloaded. The H register is loaded to or from the next higher memory
address. The addressing is direct because the memory locations
involved are specified directly by the program. Each instruction
requires sixteen clock cycles.

The LXI (for load extended immediate) allow the loading of a
sixteen-bit value from the program to a register pair. Ten clock cycles
are required.

One lone instruction is available for an exchange of registers: the
XCHG or EX DE, HL, with decimal value 235 and hex value EB. It
exchanges the contents of the HL and DE registers. This instruction,
by far the briefest of the sixteen-bit transfers, requires only four clock
cycles.

Stack Operations

When you write a machine-language program, the most frequent
reminders of the existence of the stack are the PUSH and POP instruc-
tions. The stack is also affected during subroutine CALLs and
RETurns. Be sure there is always a POP for every PUSH, and vice
versa.

When a PUSH is executed, the contents of the specified register
pair are placed on the stack.

The contents of the high-order register of the pair (A, B, D, or H)
are moved to the memory location one lower than the location pointed
to by SP. The contents of the lower-order register are moved to the
memory location two positions below the location pointed to by SP.
The contents of SP are decremented by two. Twelve clock cycles are
required to execute a PUSH.

The POP instruction undoes the action of the PUSH instruction.
Ten clock cycles are required. The stack-related opcodes are listed in
table 2.7.

The PUSH and POP instructions provide the only means of
loading the entire flag register. For example, PUSH AF followed by
POP BC moves the flag register contents into the C register and in the
process, destroys whatever was previously stored in the B and C
registers,

40 |Inside the TRS-80 Model 100

The 8080 mnemonic uses the rather cryptic abbreviation PSW
(processor status-word) to refer to the AF register pair.

The SPHL instruction moves the contents of HL to the SP
register. Six clock cycles are required.

The XTHL instruction exchanges the contents of the HL register
with the location pointed to by SP. More specifically, the contents of L
are exchanged with the contents of the memory location pointed to by
SP, and the contents of H are exchanged with the contents of the
memory location one address higher than that pointed to by SP.
Sixteen clock cycles are required.

Table 2.7. Stack-related opcodes

8080 280
Decimal Hex Mnemonic Mnemonic
193 C1 POP B POP BC
209 D1 POPD POP DE
225 E1 POPH POP HL
241 F1 POP PSW POP AF
197 C5 PUSH B PUSH BC
213 D5 PUSH D PUSH DE
229 E5 PUSH ™ PUSH HL
245 F5 PUSH PSW PUSH AF
249 Fg SPHL LD SPHL
227 E3 XTHL EX (SP),HL

Branch Instructions

A variety of instructions are available to transfer control; each
causes the PC to do something other than simply increment.

The JMP (jump) instruction loads a new value into the PC. The
conditional jump instructions test the condition of one or more flags
and load a new value into the PC only if the condition is satisfied. In
each case, the new PC value is contained in the second and third bytes
of a three-byte opcode. This is shown by the value FFFF in table 2.8.
Each jump requires ten cycles, unless a conditional jump fails to satisty
its condition, in which case, seven cycles are required.

The flag requirements for the various conditions are givenin table
2.8

Assembly Programming 41

Table 2.8. Jump instructions
8080 280
Decimal Hex Mnemaonic Mnemonic
195 C3 FF FF JMP FFFF JP FFFF
218 DA FFFF | JC FFFF JP C,FFFF
210 D2 FF FF JNC FFFF JP NC,FFFF
250 FA FF FF JM FFFF JP M,FFFF
242 F2 FF FF JP FFFF JP P,FFFF
234 EA FFFF | JPE FFFF JP PE,FFFF
226 E2 FF FF JPG FFFF JP PO,FFFF
202 CA FF FF | JZ FFFF JP Z FFFF
194 C2 FF FF JNZ FFFF JP NZ FFFF
Table 2.9. Conditional execution
Flag Contents to

Condition Satisty the Condition

C-carry CY=1

NGC-no carry Cy=0

P-pasitive S=0

M-minus S=1

PE-parity even P=0

PO-parity odd P=1

Z-zgro Z=1

NZ-nonzero Z=0

Subroutine Calls

The call and return instructions share with the jump instructions
the ability to change the PC and thus to redirect the flow of program
¢xecution. Just asina BASIC subroutine call, the 8085 CALL instruc-
tion transfers control to a specified address. The place where the call
occurred 1s noted, so that when the subroutine finishes (returns),
control can be returned there,

When a CALL opcode is encountered, the PC is incremented so
that it points to the next executable instruction following the opcode
that was the CALL. The PC value is placed on the stack just as if it were
PUSHed there. The second and third bytes of the CALL instruction
are treated as an address and placed in the PC, Execution continues
based on the PC contents,

42 Inside the TRS-80 Model 100

Later, when a RET instruction is encountered, the stack is
“popped” and the sixteen-bit value on the stack is placed in the PC.
Execution continues based on the PC contents, The call and return
require eighteen and ten cycles, respectively.

The 8085 subroutine instructions use the stack as defined by the
SP, just as the POP and PUSH instructions do. As a result, program-
ming errors can occur causing the returninstruction to load a meaning-
less value into the PC. The 8085 may start executing code that is not
even a program. At best the program will not execute properly; at
worst everything in RAM may be lost, and you will find yourself back
at January 1, 1900.

Two precautions will keep you out of trouble. Be sure the number
of PUSHes and POPs encountered in the execution of the subroutine
are always equal, regardless of any internal branching, and never
tamper with the SP register.

Conditional Calls and Returns

The 8085 recognizes conditional subroutine calls and returns. The
conditions that can be tested for are the same as the conditions listed in
table 2.9. If the condition fails, execution proceeds to the next instruc-
tion, much the same as in the case of a conditional jump.

A conditional call requires eighteen clock cycles if the condition s
satisfied, and nine cycles otherwise. A conditional return requires
twelve cycles if the condition is satisfied, and six cycles otherwise,

The subroutine opcodes are listed in table 2.10.

Tabte 2.10. Subroutine opcodes

8080 Z80
Decimal | Hex Mnemonic Mnemonic
205 CD FF FF CALL FFFF CALL FFFF
220 DC FFFF CC FFFF CALL CFFFF
212 D4 FF FF CNC FFFF CALL NC,FFFF
252 FCFF FF CM FFFF CALL M,FFFF
244 F4 FF FF CP FFFF CALL P,FFFF
236 EC FF FF CPE FFFF CALL PE,FFFF

continued on following page

Assembly Programming 43

228 E4 FF FF CPO FFFF CALL PO,FEEF
204 CC FF FF CZ FFFF CALL Z FFFF
196 C4 FFFF CNZ FFFF CALL NZ,FFEF
201 c9 RET RET

216 D8 RC RET C

208 Do RNC RET NC

248 Fg RM RET M

240 FO RP]ET P

232 E8 RPE RET PE

224 EO RPC RET PO

200 C8 Rz RET Z

192 Co RNZ RET NZ

Restart Instructions

The 8085 also responds to eight “call” opcodes each of which is a
single byte long, one-third the length of the usual subroutine call.
These instructions are listed in table 2.11, and require twelve clock
cycles each to execute.

Table 2.%1. Restart instructions

Location
8080 Z80 of Called
[Cecimal|Hex Mnemonic Mnemanic Subroutine

199 c7 RST G RST 00 0000
207 CF R5T 1 RST 08 0008
215 D7 RST 2 RST 10 0010
223 DF RST 3 RST 18 0018
231 E7 RST 4 RST 20 0020
2398 EF RSTS RST 28 0028
247 F7 RST 6 AST 30 0030
255 FF RST7 RST 38 0038

Restart instructions allow the eight most frequently used subrou-
tines in ROM to be assigned to these one-byte opcodes. This saves
program space every time the routine is called. In a machine other than
a Model 100, the restart instructions allow an interrupting device to
“jam” a single byte onto the data bus in such a way that the single byte

44 |nside the TRS-80 Model 100

can determine which of several routines will be used to handle the
interrupt. (The latter process is described further in chapter 15.)

These one-byte subroutine calls, called RST (for restart) instruc-
tions, are dedicated to eight predetermined addresses near 0000H.
Because that port of address space is in ROM and thus cannot be
changed by the user, the user cannot change what happens when one of
the RST instructions is executed.

Nevertheless, the ROM code associated with the RST instructions
may be put to use; the ROM functions are listed in table 2.12.

Tabie 2.12. Model 100 restart routines

Mnemonic Jumps to Function
RST Q0 7D33 Same as RESET
RST G8 Find any BASIC special character
RST 10 0858 Find next BASIC character
RST 18 Compares DE and HL
RST 20 4844 Sends character to LCD or PRT
RST 28 1069 Determines variable type
RST 30 33DC Returns sign of first
floating point accumulator
RST 38 7FD6 Indexed jump (see text)

The RST 20 instruction is handy. It sends a character to the screen
or printer depending on the condition of an output flag in RAM (see
chapters 10 and 13).

The RST 18 routine compares the DE and HL registers. Upon
return from the routine, the Z flag is set if the registers are identical,
and reset otherwise. To see how this is done, disassemble the code at
0018 to 001D.

The RST 00 instruction accomplishes the same thing as a jump to
0000, although in fewer bytes. RST 00 causes an initialization of the
kind that occurs when the RESET button is pressed or the power to the
Model 100 is turned on,

The RST 38 instruction is best thought of as a two-byte instruc-
tion. The byte following the RST is used as an offset. It points to a
two-byte address in a table located in RAM at addresses FADA
through FB39, and that address is jumped to. This may be compared
with the ON ... GOTO command in BASIC.

Assembly Programming 45

The RST 38 and RAM table are designed to allow for expansion.
Many BASIC commands contain an RST 38, and in each case, the
address in the RAM table returns (in cases where an existing Model
100 feature may change) or generates an FC error (in cases where a
feature is to be added). Particular RS'T 38 applications are described in
later chapters.

If you want to test your understanding of the stack to the fullest,
disassemble and study the code at 7FD6 through 7FF3, which accom-
plishes the vectored jump of the RST 38 subroutine.

The RST 08 instruction can also be thought of as a two-byte
instruction. The byte following the RST 08 opcode is treated as an
ASCII character or BASTC token. It is compared with the next charac-
ter in a BASIC program line. One odd ocecurrence is the use of the
exchange instruction at 0009. The exchange is performed between HL
and the memory location pointed to by SP, but usually that memory
location is in ROM. The instruction is essentially used as a one-way
data transfer, since you cannot successfully load data into ROM.

The RST 10 routine is used in parsing a BASIC program line. It
locates the next significant character, ignoring spaces, tabs, and the
like.

The RST 28 and 30 routines are used in handling variables. RST
28 determines the variable type, and RST 30 returns the sign of the
value in the first floating-point accumulator.

Another Jump Instruction

The 8085 CPU recognizes a jump instruction that might be
thought of as a sixteen-bit register load, since it loads the contents of
the HL register into the PC. Itis analogous to the BASICON ... GOTO
command. The decimal value for the opcode is 233 (hex E9). The 8080
mnemonic is PCHL, and the Z80 mnemonic is JP (HL).

46 Inside the TRS-80 Modet 100

Arithmetic Functions

The 8085, like all microprocessors, has rather limited arithmetic
capabilities. It can add or subtract, if the numbers are not too large,
and it can multiply and divide, if the multiplier or divisor is a power of
two. Anything else must be performed as a combination of the above
instructions.

The arithmetic and logic functions of the 8085 set and reset the
various flags in the F register. The first and most straightforward of the
arithmetic functions is addition. Several kinds are provided for. In
each case, one of the two numbers to be added is placed in the
accumulator. After the instruction has been executed, the result is
found in the accumulator.

The other of the two numbers to be added can be found in another
register (register direct addressing), somewhere in memory (register
indirect addressing), or in the latter part of a two-byte instruction
(immediate). The available opcodes are listed in table 2.13.

Table 2.13. Eight-bit Add instructions

8080 Z80

Decimal | Hex Mnemonic Mnemonic
135 a7 ADD A ADD AA
128 80 ADDB ADD AB
129 81 ADDC ADB AC
130 82 ADDD ADD AD
131 83 ADDE ADD AE
132 84 ADD H ADD AH
133 85 ADD L ADD AL
134 86 ADD M ADD A, (HL)
198 C8 FF ADIFF ADD AFF

The ADD (and its relatives, the subtract, add-with-carry, and
subtract-with-borrow) direct instructions require four cycles, while the
indirect and immediate instructions require seven cycles. In each case,
all of the flags in the F register are updated, based on the final
condition of the accumulator.

The Carry (C or CY) and Auxiliary Carry (AC) flags deserve
special explanation.

Assembly Programming 47

When two numbers are added, the sum is often too large tofit into
the accumulator. When this happens, the carry (CY) flag is set, and a
properly written program checks to see if a carry occurred and
responds accordingly.

Similarly, when dealing with BCD (binary-coded decimal, ex-
plained in chapter 11) numbers, you may want to know whether the
result is too large to fit in four bits. If a carry occurred from bit 3 to bit
4, the auxiliary carry flag (also sometimes known as the half-carry), is
set. It is reset otherwise.

The ACflag cannot be used as the condition of a jump or call. Tt is
used by the DAA instruction,

Addition with Carry

When numbers that do not fit into a single accumulator are being
manipulated, you must break them into parts and treat them separ-
ately. When two such numbers are being summed, you add from right
to left, just as you were taught in grade school.

When the rightmost part is added, a carry may occur. You need a
way to add that carry to the part of the number that has not yet been
summed {the part to the left of the part that has been summed). The
8085 instruction set specifically provides for this with the “add-with-
carry” opcodes, which are listed in table 2.14. The add-with-carry
instructions are identical to the ADD instructions in all respects except
for the handling of the carry flag.

Tabie 2.14. Eight-bit Add-with-carry

8080 280

Decimal | Hex Mnemonic Mnemonic
143 8F ADCA ADC AA
136 88 ADCB ADCAB
137 89 ADCC ADCALC
138 8A ADCD ADCAD
139 8B ADCE ADC AE
140 8C ADCH ADCAH
1414 8D ADCL ADCAL
142 8E ADCM ADC A,(HL)
206 CE FF ACI FF ADC A FF

48 Inside the TR5-80 Model 100

Subftraction

The subtract and subtract-with-borrow instructions work the
same way as the add and add-with-carry instructions. The two carry
flags have analogous meanings. In the case of subtraction, the CY flag
indicates whether a borrow was attempted from bit 8. This happens
when a larger number is subtracted from a smaller one. The AC flag
indicates whether a borrow was made from bit 4. The subtract and
subtract-with-borrow instructions appear in table 2.15. In the case of
the subtract-with-borrow, the borrow flag is subtracted from the
accumulator as part of the subtraction process.

Table 2.15. Subtraction instructions

8080 Z80
Decimal Hex Mnemonic Mnemaonic

151 97 SUB A SUB AA
144 0 susB SUB AB
145 91 SUB C SUBAC
146 92 SUBD SUBAD
147 a3 SUBE SUB AE
148 94 SUBH SUB A H
149 95 suBL SUBA,L
150 96 SUB M suUB (HL)
214 D6 FF SUIFF SUB FF
159 9F SBB A SBC AA
152 98 SBB B SBC AB
153 g9 SBBC SBC A,C
154 9A SBB D SBC AD
165 9B SBBE SBC AE
156 8C SBBH SBC AH
157 ap SBB L SBCAL
158 9E SBB M SBC A (HL)
222 DE FF SBiIFF SBCFF

Intable2.15, the 8080 mnemonics SUI and SBI stand for subtract
immediate and subtract-with-borrow immediate, while the Z80 mne-
monic SBC stands for subtract-with-carry.

) %
l
.

Assembly Programming 49

Eight-bit increments and decrements

The 8085 can be instructed to increment (increase by one) or
decrement (decrease by one) an eight-bit register or the contents of a
memory address. All condition flags except CY are affected. In the case
of the registers, the instruction requires four cycles, while the memory
increment or decrement requires ten cycles. These instructions are
listed in table 2.16.

Table 2.16. Eight-bit increments and decrements

8080 Z80

Decimal Hex Mnemonic Mnemgonic

60 3C INR A INC A

4 04 INR B INC B

12 oC INRC INC C

20 14 INRD INC D

28 1C INRE INC E

36 24 INRH INCH

44 2C INR L INC L

52 34 INR M iINC (HL)

61 3D DCRA BEC A

5 05 DCRB DECB

13 oD DCRC BEC C

21 15 DCR D DECD

29 1D DCRE DECE

37 25 DCRH DECH

45 2D DCRL DECL

53 35 DCR M DEC (HL)

Binary-Coded Decimal Operations

One arithmetic instruction is used solely for binary-coded decimal
operations. After addition has taken place, it can be used to clean up
the accumulator so that neither the upper half nor the lower half of the
accumulator contains the BCD equivalent of a number greater than
nine.

50 Inside the TR5-80 Model 100

This is what happens when the DAA (decimal adjust accumula-
tor) instruction is executed. If the low-order four bits constitute ten or
larger or if the AC flag was set previously, the value six is added to the
accumulator. This may cause a carry into bit 4,

If the high-order four bits have a value of ten or more or if the CY
flag was set previously, the value six is added to the high-order four bits
of the accumulator. This may cause a carry into bit 8 to occur.

This opcode has a value of 39 decimal, or 27 hex, and requires four
clock cycles. All condition flags are affected. The opcode is used in six
different places inthe ROM BASIC arithmetic routines, between 2C34
and 2E40.

Sixteen-bit Arithmetic

The sixteen-bit capability of the 8085 is quite limited. Addition
can be performed, and the HL register is used as the accumulator. Prior
to the summation, one of the addends is located in the HL register, and
the other is Jocated in another register pair. When the addition is
finished, the sum is compieted in the HL register.

Of the various condition flags, only the CY flag is affected by
sixteen-bit arithmetic. It is set if the sum yields a carry at bit 15. The
instruction requires ten clock cycles. The instructions are listed in table
2.17. The mnemonic DAD stands for double add.

Table 2.17. Sixteen-bit addition

kR Sl 2 R i

.

8080 Z80
Decimal Hex Mnemonic Mnemonic
9 09 DAD B ADD HL,BC
25 19 DAD D ADD HL,DE
41 29 DAD HL ADD HL,HL
57 39 DAD SP ADD HL,SP

Sixteen-bit increment and decrement instructions are also availa-
ble. These are listed in table 2.18. Each requires six clock cycles; no
condition flags are affected. The mnemonics INX and DCX stand for
increment extended and decrement extended respectively.

Assembly Programming 51

Table 2.18. Sixteen-bit increments and decrements

8080 Z80
Decimal Hex Mnemonic Mnemonic
3 03 INX B INC BC
19 13 INXD INC DE
35 23 INX H INC HL
51 33 INX SP INC SP
11 0B DCX B DEC BC
27 1B DCXD DEC DE
43 2B DCXH DEC HL
59 3B DCX 8P DEC SP

Logical Operators

The B085 is designed to perform logical operations on eight-bit
values. This is useful not only in calculations but also as a way of
setting a particular bit equal to 1 or 0.

The AND, OR, and XOR instructions are listed in table 2.19. In
each case, one number is placed in the accumulator, the operation is
performed, and the result is found in the accumulator. The operations
take place exactly as described on page 111 of the Model 100 Owner’s
Manual. The other number can be found in another register. [tcanbea
value found at a memory address, or it can be a constant stored as the
second byte of a two-byte instruction (immediate).

The immediate and memory operations require seven clock
cycles, and the register operations require four cycles.

Table 2.19. AND, OR, and XOR operations

8080 Z80
Decimal Hex Mnemonic Mnemonic
167 A7 ANA A AND A
160 AD ANA B AND B
161 Al ANA C AND C
162 A2 ANAD ANDD
163 A3 ANA E AND E
164 Ad ANA H AND H

continued on following page

52 Inside the TRS-80 Model 100 _ Assembly Programming 53

TURNING A BIT OFF
8080 Z80
Decimal | Hex Mnemonic Mnemonic . To turn off bit 3 of the accumulator, use the AND instruction with
185 A5 ANA L AND L a value that has all bits on except bit 3, namely [111011], or FC hex.
166 AB ANA M AND (HL) E
230 £6 FF ANI FF AND FF TESTING A REGISTER PAIR FOR ZERO
183 B7 ORA A OR A Often you want to know whether the value in a register pair, such
176 BO ORAB ORB as BC, has been decremented to zero. The easiest way to do this is to
177 B ORAC ORC load B into the accumulator, and OR it with the C register.
178 B2 ORAD ORD
179 B3 ORAE CRE COMPARISON OPERATIONS
180 B4 ORA H OR H
181 85 ORA L ORL ' Sometimes you want to know whether two values are equal, but
182 B6 ORA M OR (HL) : the algebraic difference of the two is not required. The compare
246 F6 FF ORI FF OR FE instruction determines the relation between two values. It sets the
175 AF XRA A XOR A : condition flags at the values they would have if the two numbers had
168 A8 XRA B XOR B been subtracted. The value in the accumulator is unchanged as a result
169 AQ XRA C XOR C of the operation.
170 AA XRA D XOR D 2 In particular, the Z flag is set at 1 if the two compared values are
171 AB ¥RA E XOR E | equal. The carry (CY) flag is set at | if the accumulator contents are
172 AC XRA H XOR H . less than the other value. The latter result is obtained because if the
173 AD XRA L XOR L ' operation had been a subtraction and if a larger value were subtracted
174 AE ¥RA M XOR (HL) _ from the accumulator, a borrow would have occurred. The compare
238 EE FF XR| FE XOR FE : instructions are listed in table 2.20.
Table 2.20. Compare instructions
: 8080 Z80
With the AND, OR, and XOR instructions, the carry (CY)}flagis Decimal Hex Mnemonic Mnemonic
cleared. The OR and XOR operations clear the AC flag as well. 191 BF CMP A CPA
The manner in which the AND instruction handles the AC flag 184 B8 CMP B CPB
differs between the 8080 and the 8085. This is one of the few substantive i 185 B9 CMP C CPC
differences between the two CPUs that might make an 8080 program o 186 BA CMP D CPD
run incorrectly on an 8085, In the case of the 8085, the AND operation f_ 187 BB CMPE CPE
simply turns the AC flag on. The 8080, however, sets it equal to bit 3 of 188 BC CMP H CPH
the result of the AND operation in the accumulator. 189 BD CMPL CPL
190 BE CMP M CP (HL)
TURNING A BIT ON : 254 FE FF CPI FF CP FF

For example, to turn on bit 2 of the accumulator, use the OR
instruction with a value of two to the power of two, namely 4.

54 Inside the TRS-80 Model 100

Rotate Instructions

The rotate instructions are easier to illustrate than to describe (see
figure 2.2.) A rotate instruction shifts the entire contents of the accum-
ulator one position to the left or right, leaving an open bit at the empty
end of the accumulator. In the RLCA and RRCA instructions, what
goes out one end of the accumulator comes back in the other end and
goes tothe carry. Inthe RLLA and RRA instructions, what goes out one
end of the accumulator ends up in the carry, while the contents of the
carry come in the empty end of the accumulator. An RLA followed by
an RRA leaves everthing as before, with no loss of information. In
contrast, either of the RLCA and RRCA instructions destroy the
former contents of the carry flag. The opcodes and mnemonics are
listed in table 2.21.

Tabie 2.21. Rotate instructions

8080 Z80
Decimal Hex Mnemonic Mnemonic
23 17 RAL RLA
31 1F RAR RRA
7 07 RLC RLCA
15 OF RRC RRCA

Each instruction requires four clock cycles, and in each case only
the carry flag is affected.

Assembly Programming 55

808C
MNEMONIC

O e

_‘ii

Z80

MNEMONIC
RAL RLA CY =
RAR
RLC RLCA CY |=
RRC RRCA = CY

Figure 2.2.

S -

Rotate instructions

56 inside the TRS-80 Model 100

USES FOR THE ROTATE INSTRUCTIONS

Rotation to the left or right is comparable to multiplying or
dividing by two, respectively.

If ajump that is conditional on either bit 7 or 0 of the accumulator
is desired, the most economical way to program it is to rotate the bit of
interest into the carry, and then jump conditional on the carry flag.

When serial information is being sent to the CPU, whether as an
input on the SID pin (see chapter 12), or through an 1O port {(see
chapter 11), the rotate instructions provide a handy way to reconstruct
the byte:

s rotate the recently received bit into the carry

* |cad the partial byte (from the previous bits received)
into the accumuiator

s rotate the carry bit into the accumulator
* repeatthe process until eight bytes have been loaded.

A similar process may be used to send out serial data from the
CPU, as discussed in chapters 11 and 12.

Other Logical Instructions

The accumulator complement instruction turns off each bit of the
accumulator that is on, and turns on each bit that is off. This 1s also
known as a ones complement. No condition flags are affected. The
operation requires four clock cycles.

The opcode and mnemonics are shown in table 2,22,

Table 2.22. Other logical operations

8080 Z80
Decimal | Hex Mnemonic | Mnemonic|[Meaning
55 37 STC SCF set carry flag
63 3F CMC CCF complement carry flag
47 2F CMA CPL complement accumuiator

Assembly Programming 57

Because of the way negative numbers are treated in addition and
subtraction, simply complementing the accumulator is not the way to
change the sign on aninteger stored there. Instead a two’s complement
must be performed. A two’s complement consists of the performance
of a one’s complement followed by the addition of 1.

The Carry Flag

The carry flag may be turned on by means of the ser carry flag
instruction or may be complemented by the complement carry flag
instruction, The only condition flag affected is the carry flag. Each
operation requires four clock cycles.

Machine Control Instructions.

The HALT instruction stops the processor. This is used in ROM
as part of the power-down sequence at 1431-1458, and also appears
enigmatically in the TEXT program at 6AC3.

The only way to overcome a halt is by a RESET or by turning the
power off and on again.

NOP stands for no operation and is just that -- an instruction
which does nothing except use up four clock cycles. No flags are
affected. Sometimes a NOP is placed in RAM to allow new instruc-
tions to be inserted later without the need to reassemble the program.

Table 2.23. Machine control opcodes

8080 280
Decimal | Hex Mnemonic | Mnemonic

243 F3 Dl Dl

251 FB El El

118 76 HLT HALT

it a0 NOP NOP
32 20 RiM {none}
48 30 SIM (none}

58 inside the TRS-80 Mode! 100

The EI and DI instructions are used to enable and disable inter-
rupts, respectively. This is discussed in detail in chapter 15. Interrupts
are disabled when a time-sensitive process is to be performed or when a
particular sequence of loading registers or output ports must not be

interfered with. .
The RIM (read interrupt mask) and SIM (set interrupt mask)

instructions are used to perform cassette input and output (see chapter
12) and to mask selected interrupts (see chapter 15).

3

Advanced RASIC

There are a number of BASIC commands and functions which,
though only briefly explained in the owner’s manual, must be fully
understood before one can begin machine language programming with
the Model 100. These are covered in detail in this chapter.

Recall from the discussion in chapter 1 that the Model 100 archi-
tecture allows the 8085 CPU to communicate with the integrated
circuits around it by means of I/ O ports (of which 18 are implemented
out of a possible 256) and memory locations, all of which are
implemented.

In assembly language the I/ O ports are accessed by means of IN
and OUT opcodes, while memory locations are accessed by means of
load, store, and move opcodes. In BASIC the I/ O ports are accessed by
means of the INP function and OUT command, while the memory

59

60 inside the TRS-80 Model 100

locations are accessed by means of the PEEK function and POKE
command. This is summarized in table 3.1.

Table 3.1. Machine language and BASIC data transfer

BASIC Typical Machine Language

Access to Direction Method 8080 Z80
nput port | To CPU INP(n) INn N A(n)
Output port | From CPU ouUTnd QUT n OuUT (n),A
ROM,RAM | to CPU FPEEK(n) MOV r,M LD A,{n)

LDA N

LDAX
RAM from CPU POKE n,d MOV M,r LD (n),A

8TAn

STAX n

In addition to the differences in terminology between assembly
language and BASIC operations, there is a syntactical difference. In
assembly language an opcode is an opcode. In BASIC, however, some
reserved words (like PEEK and INP) denote functions, forming part or
all of an expression, and thus never follow a line number or colon;
while others (like POKE and OUT) are functions and always follow a
line number or a colon.

PEEK

The PEEK function is executed with one argument, the memory
address, which is an integer in the range 0 to 65535. The value returned
by the function is the contents of that memory location, an integer in
the range 0 to 255. PEEKs are always harmless -- executing a PEEK
will not alter the memory contents.

The PEEK function returns an eight-bit integer, but often one
wishes to use PEEKs to obtain a sixteen-bit integer (such as the
HIMEM value, discussed below) from two adjacent memory addresses.
Because the 8085 stores such integers with the high-order eight bits in
the higher memory address, the proper way to combine the PEEK
values is to multiply the higher PEEK by two to the eighth power, or
256.

Advanced BASIC 61

For example, to return the sixteen-bit value at 64430, evaluate,
PEEK{64430)+256* PEEK(64431)

Many locations worth peeking to (or at) are listed in figure 18.4.
POKE

The POKE command has two operands. The first, an integer in
the range 0 to 65535, specifies the memory address to which data is
written, and the second, an integer in the range 0 to 255, is the data
value to be written.

Although the BASIC interpreter allows POKEs to locations
below 32768, such pokes have no effect, because those locations are in
ROM. (If the standard ROM were switched out, as described in
chapter 5, and if RAM were put in its place, then a POKE to that part
of memeory would accomplish something.)

Using POKEs blindly can be dangerous. Many pointers, flags,
and the like, stored in the area 62960-65535 are essential to the operat-
ing system, and if changed indiscriminantly, can cause destruction of
user files. This destruction may not occur until several days later, when
a particular file or routine is accessed.

Some values in the 62960-65535 area, however, such as the
SOUND flag, may be freely changed by means of a POKE command.
These safe addresses are discussed in later chapters in the context of
particular Model 100 functions,

Even if POKEs are confined to RAM below 62960, problems can
still arise. A BA file, for instance, contains two-byte addresses for
succeeding BASIC line numbers. If a line number address is changed,
the BASIC interpreter’s reaction when that program is run (which
might be several days later) is unpredictable.

DO files are somewhat safer. As long as one stays away from the
beginning and end-of-file bytes, one may change values freely. The
worst that can happen s that the file, when later viewed through TEXT
or OPENed in BASIC, will be found to have the wrong contents.

CO files contain load addresses which, if tampered with, may
cause a later LOADM or RUNM to vield unpredictable addresses.

62 Inside the TRS-80 Model 100

Often one wishes to store a sixteen-bit value in RAM. This is
accomplished in a manner similar to a sixteen-bit PEEK. The low-
order eight bits are stored to the named location, and the high-order
cight bits are stored to the next higher memory location.

For example, to store the value 62700 to memory address 62964,
one must separate the low-order and high-order parts of the integer
62700. In principle this could be accomplished as follows:

high-order part is 62700 AND {255”256)
low-order part is 62700 AND 255

Unfortunately, BASIC will not perform AND, OR and XOR
operations on integers larger than 32767. One way to avoid this prob-
lem is to test the desired value, say 62700, and if it is bigger than 32767,
simply subtract 65536 from it, yielding in this case -2836. Because
BASIC does operate on integers between -32767 and 0, they may be
used.

Thus the high-order part is (-2836 AND (255%256)), and the
low-order part is (-2836 AND 255). The proper POKEs are:

POKE 62694, (62700-65536)/256
POKE 62965, (62700-65536) AND 255

Long division can also be used to separate the high and low-order
parts. For an integer N, the high-order part H is H=INT(N/256), and
the low-order part L is the remainder, namely L=N-(H*256).

Input Ports

The various active input ports are surveyed in chapter 5, and
discussed in detail in later chapters relating to particular devices. The
INP function has one argument, the port number, which is an integer
in the range 0 to 255. The value returned by the function is the data
from that input port.

When an input is attempted from a port that has not been imple-
mented in hardware, the value returned turns out to be the number of
the port. This happens because of the shared address and data lines in
the 8085.

Use of the INP function, like the PEEK function, is always
harmless — it is impossible to hurt anything,

Advanced BASIC 63

ouT

The OUT command, like the POKE command, has two argu-
ments. It uses the second argument (an integer between 0 and 255) as
the outgoing data. The first argument, also an integer in the range 0 to
255, is the port number to which the data is to be sent. The various
output port numbers implemented in the Model 100 are surveyed in
chapter 5 and discussed in detail in later chapters.

OUT commands can be dangerous, though not, perhaps, as dan-
gerous as POK Es. Sending the wrong value to an output port can select
the option ROM when you don’t want it (any port in the range
224-239) or can cut off power in a disorderly way (port 178 or 186).
Output to other port numbers is generally harmless, although this may,
for example, upset the UART settings.

ALLOCATING RAM — THE MAXRAM AND HIMEM VALUES

As shown in figure 1.2, RAM is partitioned into areas with
distinct uses. The lowest RAM address {32768 decimal or 8000 hex ina
32K RAM model) is stored in RAM at 64192. Recall from our earlier
discussion that this value may be determined by evaluating:

PEEK(64192)+256"PEEK (64193}

BA files are placed starting at the lowest RAM address. The top
address for the last BA file is stored at 64430, This value, and all the
other “top addresses” discussed below, are updated every time a BA
program changes in size, is created through the SAVE command, or
killed. DO files are placed above BA files in RAM. The top of the DO
files is pointed to by 64432. That pointer, and other pointers described
below, are updated when a DO file grows, shrinks, or 1s killed,

COfiles are next with the top of the CO files pointed to by 64434,
That pointer is updated when a CO file is created or destroyed.

The BASIC variables, string and numeric, are stored above the
CO files. These are set whenever a BASIC program is being run.

Each block of data is “bumped upward” when more data is stored
below. For instance, if a BASIC program writes data to a DO file,

64 Inside the TRS-80 Model 100

several items move up in memory: the top boundary of the DO files, the
entirety of the CO files, and the BASIC variable area.

As more and more data is stored, sooner or later, one is greeted
with the “OM” error, which means out of memory. This is because the
types of data described so far consume all of the space between 8000
hex (in a 32K machine) and HIMEM, the user-imposed limit on data
storage.

HIMEM

HIMEM is a special BASIC variable which may form part of an
expression (e.g. PRINT HIMEM-4) but cannot appear to the left of an
equal sign. HIMEM is stored at 62964, and so may be changed by
POKEing to 62964 and 62965. (See the preceding discussion of POKE-
ing of sixteen-bit values).

The more conventional way to change HIMEM is using BASIC’s
CLEAR command.

CLEAR

The CLEAR command, when executed in BASIC, always clears
string and numerical variables and closes all files. Any dimensioned
variables lose their dimensioned status.

By convention the CLEAR command should appear at the begin-
ning of a program. For example, run this program:

10 F=25:DIM G(100)
20 CLEAR
30 PRINT F:G(99)=45:PRINT G(89)

The value for F will be displayed as 0, not 25, as F was CLEARed
in line 20. The attempt to set G(99) equal 45 will be met with a "BS”
(bad subscript) error, as the CLEAR command’s execution in line 30
caused G to lose its dimensioned status. :

Because of the way BASIC handles variables, it needs to know
ahead of time how much space will be needed for string variables.
Usually BASIC reserves 256 bytes, but this value may be changed by
providing an argument for the CLEAR command. (Values smaller

Advanced BASIC 65

than 256 can be specified. This can be helpful if additional numeric
variable space is required.)

The unused, reserved string variable space can be determined by
evaluating the function FRE("”). String constants do not occupy the
string variable space as shown in the following program:

10 CLEAR:PRINT FRE (""):1$="GHJKGKJHG":
PRINTFRE ("“):1$="GHJKGKJHG"+"":PRINT FRE("")

The first value printed wili be 256, the number of bytes set aside
for string variables. When the variable I§ is assigned a value, one might
think doing so would consume some of the variable space. BASIC,
however, simply stores a pointer to the place in the BA program (much
lower in RAM) where the string constant assigned to I3 can be found.
The free space is still 256,

When I$="GHIKGKJHG"+" is executed, BASIC is forced to
evaluate a string expression, and I$ must point to the result. The only
place to store the result is in the string variable space. As a result the
free space is diminished.

By executing the FRE function with a numeric argument, e.g.
FRE(0) or FRE(4.4), the amount of unused BASIC numeric space can
be determined.

The CLEAR command may also have a second argument, namely
a user-selected value for HIMEM. As mentioned above, HIMEM sets
anupper limit on how high in memory user data storage (BA, DO, and
CO files, and BASIC variables) may expand. As a result, anything
above the address stored in HIMEM will generally be undisturbed.

The largest permissible value stored in HIMEM 1s F5F0, the
bottom address of the operating system RAM area. This value, F5F0,
isavailable to BASIC in the special variable MAXRAM. MAXRAM,
like HIMEM, cannot appear on the left side of an equals sign. If and
when a disk operating system is installed on the Model 100, the value
returned by MAXRAM will be smaller, probably E000 hex (57344
decimal).

The second argument of the CLEAR function is checked before
BASIC changes HIMEM. If an integer larger than MAXRAM is

66 Inside the TRS-80 Mode! 100

given, an “FC” (function call) error will result, while an attempt to setit
lower than the top of BASIC variables will yield an “OM” (out of
memory) error.

To remove any protection given earlier to high memory, simply
type CLEAR 256, MAXRAM. This does not immediately destroy data
in the protected area; it simply renders it vulnerable in the event that
BA, DO, or CO files, or BASIC variables expand upward to fill that
area.

SAVEM,CSAVEM

Four BASIC commands, CLOADM, CSAVEM, LOADM, and
SAVEM have been provided to facilitate manipulation of machine-
language programs.

Upon generating machine language instructions, the assembler
places these in RAM, usually at the location where it is intended that
the machine language program will run. In the Model 100, this is
usualiy a location in RAM between HIMEM and MAXRAM. The
block of memory containing the program has a starting and an ending
address, and the program itself usually has a entry (or transfer)
address.

(Although assemblers vary, usually the start address is set by an
ORG or ORIGIN psuedo-opcode, and the entry address is set by an
END psuedo-opcode.)

The SAVEM command may be used to store the program as a
RAM file, freeing the protected RAM area for other uses. SAVEM’s
syntax is;

SAVEM strexp, stadd, endadd, tradd

The argument strexp is a string expression containing a filename
preceded optionally by a device. The device may be CAS: or RAM:. If
none is specified, RAM is assumed. The filename will have the exten-
sion “.CO” appended. The arguments stadd and endadd are integers
specifying the starting point and ending point in RAM of the block to
be stored in the CO file.

L S e R R DA R e A
i
i

Advanced BASIC 67

The CO file that results from the command contains not only the
data from high RAM, but also information about where the data will
be reloaded if the file is accessed using menu selection (discussed later)
or LOADM. As discussed in chapter 18, the CO file contains the
address to start reloading to (always the same as the start address when
the SAVEM was performed); the size of the program (obtained by
subtracting endadd from stadd); and the transfer address. This applies
to both tape and RAM files.

Note that after a SAVEM to RAM, two copies of the machine
language program now exist — one in high memory and one some-
where between the DO files and the BASIC variable space. If memory
space is short, one may free up the high RAM by typing CLEAR
LMAXRAM.

The CSAVEM command functions like the SAVEM command
except that a device of CAS: is automatically prefixed to the filename.

LOADM AND CLOADM

Assuming a tape or RAM file with extension CO has been created,
the machine language program may be reloaded to protected RAM by
using the BASIC command LOADM. The syntax of the command is:

LOADM strexp

where strexp is a string expression containing a filename and option-
ally a device type of CAS: or RAM:, (If no device is specified, RAM: is
assumed.)

First, the CO file, which may originate from tape or RAM, is
opened. The proposed start address for reloading is compared with
HIMEM. The file is loaded only if its start address is greater than
HIMEM. The purpose of this check is to avoid damage to user files in
the area between 8000 hex and HIMEM.

Before executing LOADM, then, it may be necessary to use the
CLEAR command to reset HIMEM to a low enough value to accom-
modate the CO file.

If LOADM is executed rather than the program mode, the start,
end, and entry addresses will be displayed on the screen.

68 Inside the TRS-80 Model 100

It should be clear from this discussion that the BASIC commands
SAVEM and LOADM only allow the program to be loaded to its
original location.

The BASIC command CLOADM works exactly like LOADM
except that a device type of CAS: 1s prefixed to the filename.

VARPTR

One unpublished aspect of the VARPTR function is that if a file
number is used as the argument, the value returned is the address of the

file control block. Further discussion would be beyond the scope of this
book.

CALL

BASIC’s CALL performs essentially like the machine language
CALL. If and when the called routine returns, control is returned to
the calling BASIC program.

The syntax of the CALL function is as follows,

CALL add,expl,exp2

where add is required, but expl and exp2 are optional.

The argument add is an integer between 0 and 65535 and is the
address called. Thus the called routine may be located in ROM or
RAM. One would expect that the only RAM addresses called would be
those in the area HIMEM and MAXRAM, since there is usually no
other executable code in RAM. (There is machine code in CO files but
it cannot be CALlLed from BASIC as the jump addresses within the
CO file do not correspond to the place in RAM where the CO file
resides.) '

The argument expl is an integer between 0 and 255, and is placed
in the accumulator just prior to the call. The argument exp2 is an
integer between -32768 and 65536, and is converted to a sixteen-bit
integer and placed in the HL register-pair. (See the previous discussion
of BASIC’s treatment of sixteen-bit integers.)

Advanced BASIC 69

Often one wishes to use HL as a pointer to a series of memory
locations containing ASCII characters, for printing or other process-
ing. This can be accomplished by placing the characters into a string
variable and using the VARPTR function to determine exp2. For
example if the string is F$, its location is the sixteen-bit integer at
VARPTR(F$)+1. In other words, if B=VARPTR(FS), then exp2
should be PEEK(B+1)+256*peck(B+2).

Calls can be dangerous. The called routine is surely not as fully
error-protected as BASIC itself, and data stored in RAM may be
disturbed. Make frequent backups of user files until you are certain the
called routine is safe as these may be destroyed.

The CALL command provides one of two easy ways of executing
user-written machine language programs. Assuming the machine lan-
guage program is located somewhere between HIMEM and MAX-
RAM, one may run a short BASIC program to CALL the machine
language program. Often a program contains both a BASIC portion
and a machine language portion. For instance the BASIC portion
could be used to prompt to open a file, and the machine language
portion could be used to search RAM or ROM for a certain value or
read a cassette tape in non-standard format. The BASIC program first
sets HIMEM; then it uses LOADM to place the machine program into
high memory. Then, with one or more CALLs to one or more
addresses in the machine language program, the “dirty work” is done.

MENU SELECTION OF CO FILES

The Model 100 operating system is designed to respond to menu
selection not only of BA files (by running them) and DO files (by
entering TEXT), but also of CO files. When the cursor is moved to a
CO file name and ENTER is pushed, the CO file is loaded to high
memory, assuming that the current vaue of HIMEM leaves enough
room for the file. (If HIMEM is too high in value, the operating system
will beep and return to the menu,) Any machine language program
previously located in the protected high RAM area will be destroyed.

70 Inside the TRS-80 Model 100

Assuming an entry or transfer address was specified when the CO
file was created, CPU execution will proceed at that address.

For this reason menu selection of a CO file can be dangerous.
Unless you are quite certain that the CO program behaves itself and
does not tamper with the wrong parts of RAM memory, be prepared
for loss of user files.

BATTLE OF THE CO FILES

Z80 programmers are accustomed to so-called relative jumps,
which make it possible to write programs which will run no matter
where in RAM they have been loaded. Unfortunately, the 8085 has no
relative jump instructions in its instruction set. Each jump must con-
tain the actual sixteen-bit address to which control will be transferred.
Unless part of the machine language program actually resides at that
location, the program will not function properly.

. No problem arises when a BASIC program uses a single CO
routine and no other, since the BASIC program may LOADM the CO
file into high memory and use it, paying no attention to the previous
contents.

POKING INTO PROTECTED MEMORY

BASIC itself can be used both to load and run a machine language
program. Obviously this is practical only if the program to be run is
small, because no one enjoys typing in long BASIC DATA statements.

But in situations where it is intended that a routine, perhaps a
bar-code-reader device handler, will remain in high RAM indefinitely,
there will be a conflict. The cleanest, but perhaps most troublesome,
solution is to reassemble the other machine routine so that it may
reside in RAM below the bar-code-reader driver, and protect both
routines.

Any two companies offering a line of machine language software
for the Model 100 will likely choose loading addresses designed to
conflict with each other’s loading addresses, so that whichever com-
pany makes the first sale to a customer will be likely to make all future
sales. The customer may need to disassemble and reassemble such
routines to change their load locations.

Advanced BASIC 71

Program development is tedious since even the smallest program
change necessitates recalculating and retyping numerous decimal
integers.

Nonetheless, without access to an assembler, BASIC POKEs are
really the only choice. Also, sometimes machine language is intended
for just onelittle piece of a program whle BASIC is used to receive the
user input or to format the output. Such a BASIC program must first
use the CLEAR command to protect the portion of high memory
where the machine language code will be placed. Then a FOR loop is
used to load the values into memory. If desired, a CALL command
may then be used to execute the machine language.

The following example demonstrates how to use BASIC POKEs
to accomplish machine language programming. Note how similar the
ADDRESS and SCHEDUL programs are — they scanthe ADRS and
NOTE files, respectively, and display or print records containing a
particular word or phase. The entry addresses for the two programs
may be found in the system file directory (described in chapter 18).
These are 5B68 and 5B6F.

If you disassemble the code at 5B68-5B72, you will see that each
entry point leads to 5B74, the “plain vanilla” program underlyving the
two. Prior to reaching 5B74, each entry point sets DE to point to an
ASCI! string of the name of the file to be scanned and sets the
accumulator with a flag value to indicate whether the command
prompt will be “Adrs:” or “Schd:™

Your first reaction might be to simply use the BASIC CALL
command to call 5B74, Unfortunately the CALL command cannot be
used to set the DE register, only the HL. Furthermore, to keep the
stack in order, a jump to 5SB74 must be executed rather than a call.

Thus the way to harness the ADDRESS/SCHEDL program for
your own use is to set HL to point to the filename, and then execute the
following machine code:

D1 POP DE
EB EX DE, HL
C3 74 5B JMP 5B74

72 Inside the TRS-80 Modei 100

The purpose of the first POP is to eliminate the return address
from the CALL, because it wilt never be used. EX represents a simple
method of loading the value in HL into the DE register. A jump to the
ROM program follows.

After writing the assembly language program, you must assemble
it. This can be done by hand using the opcode tables in the appendices.
The decimal values appear in the CHRS$ functions.

The rest of the program retrieves the user input, converts it to
uppercase, and provides the pointer to the location of the opcodes for
the CALL. The program in finished form follows:

20 P$=CHR$(209)+ CHR$(235)+CHR$(195)+CHRS
(116)+CHR$(91):PRINT“Input file:

" LINEINPUTFS:F$=LEFTS(F$.6)+".DO"+CHR$
(0):FORI=1TOLEN{F$):C=ASC(MID$(F$.1,1))
IFC>96 AND C<123THENC=C-32

120 POKE64984+1,C:NEXT:A=VARPTR(P$)
‘CALLPEEK {A+1) +256*PEEK(A+2),0,64985

A

4

Borrowing From /80 Exoerience

Differences Between The Z80 and 80C85 Instruction Sets

Recall from the discussion in chapter 2 that the most machine
level programming is accomplished by writing a program in human-
readable assembly mnemonics which are processed by an assembler to
yield hexadecimal, and ultimately binary, values which are stored in
RAM or ROM and then executed by the CPU.

Of the 256 possible values which may be returned when the CPU
fetches an eight-bit byte from memory, 244 have precisely the same
result when executed by 8080, 8085 and Z80 processors. Two hundred
of them comprise one-byte opcodes, eighteen serve as the first byte of
two-byte opcodes, and twenty-six serve as the first byte of three-byte
opcodes. These values are listed in appendix C, tables C.I, C.2, and
.3

73

74 Inside the TRS-80 Model 100

Twelve eight-bit values (08, 10, 18, 20, 28, 30, 38, CB, D9, DD,
ED, and FD), however, are treated differently by the three processors.
The behavior of the 8080 is undefined for all twelve; they may be
thought of as gaps in the 8080 instruction set. (There are even more
gaps, so defined, in the 8008 instruction set.)

The designers of the 8085 filled in two of the twelve gaps: 20H and
30H are one-byte instructions which load the interrupt mask register
(present in the 8085 but not in the 8080 or Z80) to and from the
accumulator (A) register. The behavior of the 8085 is undefined as to
the remaining ten values; this is shown by the data entries in tables C. 1,
C.2, and C.3. Nonetheless, any program written for the 8080 will run on
the 8085, since the permissible instructions for the 8085 merely expand
upon, but do not change, the 8080 instruction set.

The designers of the Z80 filled in all twelve gaps in the 8080
instruction set, but filled them in differently than did the designers of
the 8085. Thus, while any program written for the 8080 will run on the
Z80, not every program written for the 8085 will run on the Z80. More
to the point, for Model 100 owners as a general rule programs written
for the Z80 will not run on the 8085.

Because of the close relationship between the Z8(} and 8085
instruction sets, programming techniques and algorithms from Z8(
machines are nonetheless helpful in writing and modifying programs
for the Model 100. Indeed, many readers of this book first learned
assembly language programming with the Z80 microprocessor, since it
was used in the Radio Shack TRS-80 Model I, 111, and IV computers.
Thus it is instructive to devote some attention to the Z80 instruction
set.

Let’s compare, for example, the behavior of the 8085 and Z80
CPUs upon fetching the value 7EH in the course of executing a
program. By referring to table C.1, you can se¢e that a programmer
accustomed to the 8085 would think of this asa MOV A, M instruction,
while a Z80 programmer will consider it to be a LD A,(HL) instruc-
tion. The result in each case is the same — the contents of one of the

65536 memory locations available to the CPU (and pointed to by the
16-bit register HL) are moved (loaded) to the A register. The only
difference is a semantic one — the assembly mnemonic read by an
assembler is MOV A M according to the conventions for mnemonics

Borrowing From Z80 Experience 75

set up by Intel when it introduced the 8008 and 8080 processors, or
LDA, (HL} according to the conventions set up by Zilog when it
introduced the Z80.

Likewise an analogy may be drawn between most of the Z80 and
8085 mnemonics. Table C.2 lists the 8085 mnemonics alphabetically
with the corresponding Z80 mnemonic. Similarly, table C.3 lists the
Z30 mnemonics alphabetically with the corresponding 8085 mnemonic.,

As should be apparent from this discussion, those Z80 operations
whose opcodes appear in the gaps of the 8080 instruction set do not
appear in the 8085 instruction set. They would result in undefined
behavior if executed by the 8085.

When converting a Z80 program for 8085 execution, itis not justa
matter of finding a combination of 8085 instructions to replace each
non-8085 Z80 instruction. This is because the Z&0 contains several
registers (IX, IY, AF’, BC’, DE’, HL, refresh register R, and interrupt
page register [) not present in the 8080 or 8085. The Z80 instructions
manipulating these registers have no close substitute in the 8080 or
8085 instruction sets.

Many other non-8085 instructions, though, have relatively easy
substitutes in the 8085. For example, in the 8085:

e There are no bit set or test instructions, though of
course the eguivalent can always be accomplished
through the AND, OR, and rotate instructions.

* There are no relative jumps JR nor DJNZ. Many 280
programs are location-independent through use ofrel-
ative jumps, while any jump instruction for the 8085
must provide the absolute address.

* The various incremented and decremented loads and
compares are missing. These include; LDI, LDIR, LDD,
CPI, CPIR, CPD, and CPDR. These routines may all be
performed piecemeal by combinations of simplier 8085
instructions.

e The NEG instruction, which performs a 2's complement
on the Aregister and sets various flags, is notavailable.
The former may be performed by taking the 1's com-
plement CPL (CMA) and adding one, butitisimportant
to realize the CPL instruction only sets the H and N
flags.

76 Inside the TRS-80 Model 100

The following general principles, then, should guide you in con-

Two Z80 18-bit arithmetic instructions are missing:
ADD HL,ss and SBC HL,ss. The ADD HL,ss (DAD}
instruction is a ciose but not perfect substitute because
it sets only the H,N and C flags.

Rotateinstructions (RLC, RL, RRC, RR) may be applied
only to the A register. Thus if it is desired to rotate the
contents of some other register, it will be necessary to
load the register to the accumulator, rotate it, and load
the contents back to the other register.

The shift instructions of the Z80: SLA, SRA, and SRL,
are not available. The accumulator rotate instructions
must be used instead, masking the left and rightmost
bits as necessary with AND or OR instructions.

The Z80 double-word rotate instructions (RLD and
RRD) are not available. Single-word rotate instructions
must be used instead.

The folowing Z80 1/Q instructions are not available in
the 8085: IN r,(C}, OUT {C)r, INI, INIR, IND, INDR,
QUTI, QTIR, OUTD, and OTDR. In the 8085, input and
output ports may be loaded to and from the A register
only, and the port number must appear directly as part
of the two-byte opcode.

The interrupt modes of the 8085 are determined
through the SIM instruction, rather than the Z80
opcodes IM 0, IM 1, and IM 2. Return from an interrupt
is accomplished with a simple BET rather than RET! or
RETN.

verting a Z80 program for Model 100 use:

1.

I/0 iocations in the Model 100 are all different than for
any other machines. (See table 5.4.} In particular, the
TRS-80 Models |, lil, and IV accomplish some /O
through memory-mapped devices accessed by LD
instructions rather than IN and CUT instructions.

Any Z80 instruction starting with 08, 10, 18, 20, 28, 30,
Z8, B, D8, DD, ED, or FD must be replaced somehow.

. Subroutine calls to ROM will be different in the Model

100 than in any other machine.

. Referencesto I1X, 1Y, AF', BC', DE’, HL', refresh register

R, and interrupt page register | must be replaced
somehow.

. Relative jumps (JR) must be converted to absolute
jumps (JP).

Borrowing From Z80 Experience 77

If you have a Z80 assembler operating on another machine (such
as a Model I, III, and IV) you can use it as an aid in Model 100
assembly programming, at least as a convenient way to assembie
mnemonics into hex code. (Strictly speaking, this is called using the
assembler as a cross-assembler.) The following points should be
considered:

1. Always print and examine a listing of the assembly
process to be sure you have not used forbidden
opcodes starting with Z8, 10, 18, 20, 28, 30, 38, CB, D9,
DD, ED, and FI3, Your listing should show na four-byte
opcodes, asthereare no four-byte opcodes in the 8085
instruction set.

2. If you are using RIM or SIM instructions, you will have
to insert them manually, holding their place in the
mnemonic source with NOP instructions.

3. If the assembler accepts 8080 mnemonics, you may
wish to learn and assemble them instead of Z80 mne-
monics, as this provides a built-in safeguard against
using forbidden opcodes.

With a bit of ingenuity you may be able to work out a way to load
the hex values from the assembly machine into the Model 100.

5

Unaerstanding the Hardware of
the Model 100

The Model 100 uses an 80C85 microprocessor. The letter “C”
indicates that it is a CMOS version of the 8085 device, which means
that it draws very little power. Most of the integrated circuits within the
Model 100 are CMOS devices. This was done to conserve battery
power. In this and subsequent chapters, 8085 is used to reference this
microprocessor rather than 80C835, since the two devices are so similar.

Communication between the 8085 CPU and the rest of the world
is accomplished almost exclusively through the input/output ports.
The 8085 has four ways of communicating with the circuitry:

80 Inside the TRS-80 Model 100

e the 65536 memory addresses which are used in the
Model 100 for RAM and RCM access

e the 256 1/0 ports, of which twelve are currently used in
the Modet} 100

s the serial input and output pins, used in the Model 100
for cassette 1/O

e the interrupt pins which are used for various purposes.
Memory Locations

The CPU has the ability to load to and from a large number of
memory addresses, selected by turning on and off combinations of the
sixteen address lines. The number of distinct addresses is two to the
sixteenth power, or 65536.

In the Model 100, the bottom half of this so-called address space
contains read-only memory or ROM. Depending on certain port
outputs, memory accesses within this part of the address space connect
with the standard ROM chip M12 ora chip inan optional ROM socket
MI11.

In other words, PEEKs to addresses below 32768 yield one set of
values if the standard ROM is selected, and another set of valuesif the
option ROM is selected. When the computer is turned on, it sets itself
to the standard ROM. (The option ROM socket is discussed in chapter
17.)

Read-only memory, as its name suggests, cannot be written to. If
you try to change its contents, by means of a POKE in BASICora
store instruction in machine language, you will find its contents
unchanged. Fortunately you cannot cause any harm to the ROM by
doing this.

The top half of address space (numerically speaking) is set aside
for RAM chips, shown in figure 5.1. An 8K machine (catalog no.
26-3801) has RAM soldered in place from E000 to FFFF with three
sockets in the area from 8000 to DFFFE. A 24K machine (catalog no.
26-3802) has RAM soldered in place from A000 to FFFF and a single
socket for 8000 to 9FFF.

Understanding the Hardware of the Model 100 81

0000H prrrrrr777777770 — — — ™ —

[/]

[/ g

2 ,f;

o 7]

[’

7 7

. STANDARD 7 [— OPTION
[, ROM 7] BANK ROM
% (32K BYTE)}] SELECTION {32K BYTE)
L

4 Y

% /

% Z

M

TFRFH s psf s s A A

8000H OPTION
RAM #3
9F FFH {BK BYTE)

AQQOH OPTION
RAM #2
BFFFH (8K BYTE)

COCOH OPTION
RAM #|
DFFFH {(BK BYTE)

EQOOH 7 STANDARD 77/

[RAM
/(8K BYTE)

FFFFH LLLE
Figure 5,1. Memory map

Optional RAM modules can be installed. They can be plugged
into any vacant sockets and the CPU will be able to access them, but
the ROM operating system will only “discover”and use the RAM that
extends in an unbroken series down from FFFF,

The serial input and serial output pins of the CPU, 81D and SOD
(pins 5 and 4 respectively) are used for cassette input and output. This
is discussed in detail in chapter 12. The interrupt pins of the CPU (pins
6,7, 8,9, and 10) provide a variety of inputs to the CPU. They arc
discussed in detail in chapter 15. The cassette and interrupt pin assign-
ments are shown in table 5.1.

82 Inside the TRS-80 Mode! 100 | Understanding the Hardware of the Model 100 83

Table 5.1, Input/Output signals originating or terminating at
the CPU chip

Pin CPU Name Signal Function

sS0D SOD Serial output to cassette
SiD SiD Serial input from cassette
RST75 T 256-Hertz pulse

RST 8.5 DR UART data received

R8T 5.5 BCR Bar-code reader input

0 INTR INTR Expansion bus pin 17

—_ o o~ ;b

When the 8085 executes an IN or QUT instruction, several things
happen. The CPU asserts the 10/ M* line, indicating that it wants to
talk to an 1/ O device rather than a memory chip. The eight-bit port
address is made available on the address lines. Actually, the CPU
offers the port address twice, once on the top half of the sixteen address
lines, and again on the bottom half. Next, the CPU waits for an I/ O
device to offer or accept an eight-bit byte of data.

The eight address lines used to select I/ O ports are connected toan
address decoder, one or more integrated circuits whose task is to
interpret the various possible combinations of off and on among the
eight lines. Other devices are then activated accordingly. Most of the
port address decoding duties in the Model 100 are performed by M16,
which takes bits 7, 6, 5, and 4 of the port address as input and
determines which port integrated circuit, if any, is activated. This is
shown in figure 5.2.

The connection of the 10/ M* signal to M6 insures that M16
responds only to 1/ O port addresses and not to memory (RAM or
ROM) addresses. The connection of address bit 7 causes M16 to
respond only when bit 7 is on. In other words it responds only to port
addresses above 127 {(80H to FFH).

The connection of bits 4, 5, and 6 causes one of the eight outputs to
be selected (pulled low) in response to the bit pattern. The chip-select
signal Y0 is activated for any port address in the range of 80 to 8F. Y1 is
activated for any address in the range of 90 to 9F, and so onup to Y7,
which corresponds to F0 to FF.

KEYBOARD IN MI5, DISCRETE QUTPUTS MI4

TO EXPANSION CONNECTOR MIC
UART M22, DISCRETE INPUTS MZ23

NOT CONNECTED
DISCRETE QUTPUTS-M36
P10 M25

UART M22

LCD DRIVER CN7

Y0
¥i

Y2
13
7
Y5
Y6
Y7

15
14
13
12
1
10
9
7

Ml

Gl
G2A

M7

I0/M%
Figure 5.2. Address decoding bits 7, 6, 5, and 4

ADDRESS BIT 6
ADDRESS BIT 5
ADDRESS BIT 4

|
I~
k-
m
%]
w
Ll
o
[a]
[a]
<

84 Iinside the TRS-80 Model 100

The integrated circuits to which the Y signals are attached are
listed in table 5.2, which shows the input devices, and table 5.3, which
shows the output devices. (The “contents” column in table 5.3 is
explained later.)

‘Tabie 5.2. Input port hardware

Y Port Integrated Circuit

Y3 BB M25- PIO (port C)

Y4 C8 M22- UART (receiver buffer)
Y5 D8 M23- buffer

Y6 E8 M15- buffer

Y7 FE,FF CN7- LCD connector

Table 5.3. Output hardware and access to contents

Y Port Integrated Circuit Contents

Y2 A8 M38- flipflop FAAE

Y3 B8 M25- PIO Not available
Y3 Bg M25- P10 (port A) Input port B9
Y3 BA M25- P10 (port B) input port BA

Y3 BC,BD M25- PIO (divider) Not available

Y4 C§ M22- UART transmitter Not available
Y5 D8 M22- LJART control Not available
Y6 E8 M14- Flipflop FF45

Y7 FE,FF CN7- LCD connector

What about port address lines 0, 1, 2, and 37 MI16 pays no
attention to them. It has no way of knowing whether the CPU has
requested a port input from 80, 81, 82, or any other value up to 8F. It
activates YO for any of these addresses. This makes for a certain
arbitrariness when you are writing a program. If the task is to geta byte
of data from the UART, the result is the same whether you input from
C0 or CF, or any value in between. This is because the UART itself
ignores address bits 0 to 3, Throughout the ROM, the value C8 is used.

A few of the devices selected by M 16 do pay attention to bits 0 to 3.
For example, the PIO chip, selected by Y3, looks at bits 0 to 2 and
responds differently, depending on which bit is on. B8, B9, BA, BB,
BC, and BD are distinct port addresses in the Model 100. Taking into

Understanding the Hardware of the Modei 100 85

account the various ways port address lines are connected in the Model
100, you can develop a map of “port space” somewhat like the address
space, as shown in figure 5.1. This is depicted as a diagram in figure 5.2

and table 5.4.

Table 5.4. Port numbers

Port Numbetr Input Function Quiput Function

00-6F Not used Not used

70-8F See text See text

g0-9F Hobby use Hobby use

AB* Not used Phone/modem

B8 (&B0) Not used P10 divider control
C3-start 43-siop

Bg (&B1) Port contents Parallel outputs: LCD, LPT,
KB control,
clock/calendar

BA {&B2) Port contents Qutput pins {see table 5.6)

BB (&B3) Input pins Not used

(see table 5.7)

BC {&B4) Not used P10 divider lower hyte

BD (&B5) Not used P10 divider upper byte and mode

B6,B7,BE,BF Not used Not used

cg* UART in- UART outgeing data

coming data

Dg* input pins UART control

E8* Keyboard input Qutput pins {see table 5.8)

FE* L.CD LCD

FF* LCD LCD

* Model 100 port addresses are not fully decoded. Farexample, all ports AOthrough

AF respond identically to A8.

86 Inside tihe TRS-80 Modei 100

The Ports

No circuitry has been supplied to handle ports 00 to 6F, and
nothing in the ROM suggests expansion in that area.

Ports 70 through 8F, though only partially implemented through
the YO signal, appear to be intended for loading parallel data to and
from some mass storage device plugged into the expansion bus connec-
tor M10. Perhaps these are part of the optional 1/O control unit or
RAM file unit referred to on page 4-12 of the service manual.

Ports 90 through 9F, which correspond to port-select signal Y1,
are not connected to anything. This is described in the service manual
as an optional telephone answering unit, and is discussed further in
chapter 17.

Port AR controls discrete functions. Bit 0 disconnects the tele-
phone instrument and bit [enables modem carrier transmission. Usu-
ally you want to change only one of the bits. You can find the present
contents of the port in RAM at FAAE, change bits using AND and OR
operations, and write out to the port and to RAM.

Output port B8 programs the 81C55 PIO. The 81C55 PIO (Pro-
grammable Input/Output) chip is a forty-pin integrated circuit that
does much of the I/ O work of the Model 100. As it comes from the
factory, it contains 256 bytes of RAM that never get used in the Model
100. It also contains three ports (A, B, and C) that are capable of being
programmed as input or output ports, but the wiring of the Model 100
1s such that ports A and B are always used for output {and their
interrupt capability is never used), and C is always used for input. See
table 5.5, which shows how the PIO discrete input and outputs are
wired. Table 5.5 also shows other PIO connections.

Of the eight bits that can be output to port B8, six never change, as
they would make the P10 do things the Model 100 wiring does not fet it
do. If you do inadvertently send the wrong values for these bits, no
harm is done to the hardware.

Only two of the bits ever vary, bits 6 and 7. They control a
so-called timer, which as used in the Model 100, would be better
termed a divider, The divider-control bits 6 and 7 should be 11 (binary)
to start the divider, and 10 to stop it. (This is explained in detail in
chapters 7and 9.)

Understanding the Hardware of the Model 100 87

Table 5.5, Signals originating or terminating at PIO

Pin PiO Name| Signal Function

1 PC3 BCR Bar-code reader input

2 PC4 CTS Clear-to-send

5 PC5 DSR Data-Set ready

6 TO RRC UART receiver clock

6 TC TRC UART transmitter clock

8 CE Y3 Ports 176-191 select

32 PB3 RS232C RS&232/modem select

33 PB4 PCS Power controf signal

35 PB6 DTRR Data Terminal Ready

36 PB7 RTS Reguesi-to-send/off hook
37 PCO DATAOUT | Clock/Calendar serial out
38 PCH BUSYNOQT | Line printer selected

39 pPC2 BUSY Line printer busy

Port B9 is the general-purpose parallel output, accomplished
through PIO port A. It is used for the printer (see chapter 10), LCD
(chapter 13), and keyboard (chapter 6). In addition, it is used to send
serial data to the clock/calendar chip (chapter 11). Current contents of
the port are obtained by reading from the port.

Port BA, like A8, controls discrete functions. Unlike AS, it is
accomplished through the PIO chip (port B), so that current contents
of the port are obtained by reading from the port. Bit 0 scans the
keyboard modifier keys such as the shift and control keys. BitsOand I
address the LCD. Bits 2 and 5 control the beeper (see chapter 9). Bit 3
switches from RS$232 to modem mode (see chapters 7 and 8). Bit 4
removes power to the computer (see chapter 16). Bits 6 and 7 assert
DTR and RTS when in RS-232 mode (see chapter 7). Bit 7 hangs up
the phone when in modem mode (see chapter 8). This is shown in table
5.6.

Port BBis PIO input port C, used for sensing discrete signals. Bit0
is clock/calendar data. Bits 1 and 2 are printer status. Bit 3is bar-code

reader input (chapter 14). Bit4is CTS or ANS/ORIG (chapters 7 and
8), and bit 5 is DSR or DIR/ACP (chapters 7 and 8). These input
signals are shown in table 5.7.

88 Inside the TRS-80 Model 100

Table 5.6. Output signals (output port BA)

Function

LCD control; keyboard scan e.g. SHIFT, NUM, CAPS
LCD control

Disconnect beeper from PO divider

m
=

Switches from RS232 {0 modem
Power-control signal

Direct beeper control

DTR (0 yields + at RS-232 pin 20}
In RS-232 mode:

RTS {0 yields + at R$-232 pin 4)
in modem mode: phone line on-hook

~d o B WM e D

Table 5.7. Input signals (input port BB)

Bit Function

0 Clock/calendar data to CPU

1 LPT not busy {PRINTER pin 25}

2 LPT busy (PRINTER pin 21}

3 BCR input (1=ground at pir 2}

4 fn R5232 mode (CTS; + at RS-232 pin 5 yields togic 0}
in modem mode (1=ANS, 0=0RIG)

5 In R8232 mode {DSR; + at RS-232 pin 6 yields logic 0}
in modem mode (1=ACP, 0=DIR}

6,7 Not used (always 1)

N Ports BC and BD load the low and high bytes, respectively, of the
divider used by the PIO to produce the baud rate (chapter 7) and beep
frequency (chapter 9).

The UART sends and receives data through port C8 (chapter 7).
Port D8, like port BB, provides discrete inputs to the CPU, Bit 0 is the
carrier-detect signal (chapter 8). Bits 1, 2, and 3 indicate UART over-
run, framing, and parity errors (chapter 7). Bit4is the UART transmit-
tt?r buffer register empty signal (chapter 7). Bit 5 is the phone jack RP
signal (chapter 17). Bit 6 is not fully implemented in hardware (see
chapter 17), and bit 7 is the low-power signal {chapter 16).

Understanding the Hardware of the Model 100 89

The UART parameters (parity, word length, and so on) are pro-

grammed through output port D8 (chapter 7).
Output port E8 controls a number of discrete functions. Bit 0

selects the option ROM. Bit 1 strobes the printer. Bit 2 strobes the
clock/calendar chip and bit 3 controls the cassette motor. Youcanfind
the present contents of the port in RAM at FAAE. These signals are

shown in table 5.8,

Table 5.8. Output signals (output port E8; contents at FFE45)

Bit Funclion
0 STROM (1=select option ROM M11)
1 STROBE {1=ground at PRINTER pin 1)
2 STB {1=clock/calendar strobe)
REMOTE (1=CASSETTE pins 1 and 3 shorted)
4-7 Not used

Input port E8 provides a parallel input— the results of a keyboard
scan. Input and output ports FE and FF are used for the liquid crystal

display.
Connectors in the Model 100

The connectors in the Model 100 are sometimes referred to by
number, and are listed in order in table 5.9, In addition, the LCD
printed circuit board contains connectors numbered CN1I, CN2, and
CN3, The acoustically-coupled modem contains two connectors each
numbered CN1, and two connectors numbered CN2.

80 Inside the TRS-80 Model 100 Understanding the Hardware of the Model 100 91

Table 5.9, Model 100 connectors Table 5.12. Model 100 switches
Connecior Function Switch Function
CN1 Keyboard connector (chapter 6) SW-1 Answer/originate switch {chapter 8)
CN2 Bar-code reader connector (chapter 14) Sw-2 Direct/acoustic switch (chapter 8)
CN3 Cassette connector (chapter 12) SW-3 Memory power switch (chapter 16)
CN4 Phone connector (chapter 8) . SW-4 Reset pushbutton {chapter 16)
CNS5 Printer connector {chapter 10) SW-5 On/off switch {chapter 16)
CN6 RS-232C connector (chapter 7)
CN7 Liquid-Crystal Display connector (chapter 13)
{corresponds to CN1 on LCD board)
CN8 Low Battery LED connector {chapter 16
(corresponds to CN3 on LCD board)
CNS DC 8V connector (chapter 16)
M10 Expansion bus connector (chapter 17)
M1t Option ROM socket {(chapter 17)

The Model 100 contains three relays, listed in table 5.10.
Table 5.10. Relays in the Model 100

Relay Function

RY1 Cassette motor control (chapter 12)
RY?2 Telephone off-hook (chapter 8)
RY3 Phone instrument relay (chapter 8)

The Model 100 contains three quartz crystals used for various
time-sensitive functions; these are listed in table 5.11.

Tabie 5.11. Model 100 crystals

Crystal Freguency Used by
X1 32.768 KHz Clock/Calendar (chapter 11}
X2 4.9152 MHz CPU

PIO (chapters 7, 9)
UART (chapter 7)

Beeper (chapter 9)
X3 1.000 MHz Modem (chapter 8)

In addition to the switches contained in the keyboard, there are
five switches controlling major functions of the Model 100. They are
listed in table 5.12.

6

The Keylboard

The Model 100 keyboard has fifty-six conventional typewriter
style keys and sixteen small function keys. They are identical electri-
cally. The computer’s response to the pressing of a particular key is
determined by the program being run. Since most programs use one of
two ROM routines for reading the keyboard, it makes sense to think of
the keys in terms of the values returned by these routines.

Hardware Theory of Operation

The Model 100's keyboard consists of key switches soldered to a
printed circuit board. The keys are numbered on the board and the
correspondence between key numbers and the legend printed on the
key top is shown in table 6.1, To reorder a key top, you will need the
reference number given in the table.

a3

94 inside the TRS-80 Model 100

The Keyboard 95

Table 6.1. Printed circuit board key designations.
PCB Serv. Man.
pCcB Serv. Man. Key Ref. no. Description
Key Ref. no. Description 49 P-204 [
1 F-100 1 43 P-217 Enter
2 P-100 f2 44 P-215 CTRL
3 P-100 £3 45 P-111 a
4 P-100 4 46 p-129 s
5 P-100 f& 47 P14 d
6 P-100 6 48 P-116 f
7 P-100 f7 49 P-117 g
8 P-100 8 50 P-118 h
9 P-100 PASTE 51 P-120 i
10 P-100 LABEL 52 P-121 K
11 P-100 PRINT 53 P-122 |
12 P-100 BREAK 54 P-205 ;
13 P-100 Leftarrow 55 P-206 '
14 P-100 Rightarrow 56 P-207 CAPS
15 P-100 Uparrow 57 P-216 SHIFT
16 P-100 Downarrow 58 P-136 7
17 P-200 ESC 59 P-134 X
18 P-101 1 60 P-113 c
18 P-102 2 61 P-132 v
20 P-103 3 62 P-112 b
21 P-104 4 63 p-i24 n
22 P-105 5 64 P-123 m
23 P-106 6 65 P-208 ,
24 P-107 7 66 P-209 .
25 P-108 8 67 P-210 /
26 P-108 9 68 P-216 SHIFT
27 P-110 0 69 P-211 GRPH
28 P-201 - 70 P-218 Space
29 p-202 = 71 p-212 CODBE
30 P-203 BKSP 72 P-213 NLUM
31 P-214 TAB
32 P-127 q
33 P-133 w The seventy-two Model 100 keys reside in port space unlike the
gg i:; ;g ‘r* Model I or 111 keys which reside in memory address space. This means
16 P.130 ; that in the Models L and 111 the CPU determines which keys have been
37 P-135 y pressed by loading in data from certain of the 65536 possible memory
38 P-131 u addresses. In the Model 100, however, the CPU determines key clo-
2?} gj;g 'D sures by loading in data from certain of the 256 possible I/ O ports. As
41 P-126 p in the Model 1 and III, keyboard scanning requires the constant

continued on following page

96 inside the TR5-80 Model 100

attention of the CPU. This means that if a period of time passes during
which the CPU has not scanned the keyboard, any key pressed during
that time is ignored.

Keyboard scanning can occur due to direct action by the program
being executed or because certain interrupts are enabled.

Keyboard Scanning

The electrical layout of the seventy-two keys is an eight-by-nine
array, as shown in figure 6.1. Sixty-four keys lie in the main array and
are scanned together. They appear in table 6.2. The cight remaining
keys, most of which modify other keys, appear in table 6.3.

To determine if a particular key has been pressed, the CPU sendsa
0" to a selected bit of output port B9 (or B1; decimal 177 or 185) and
1’s” to the other bits. It also makes sure bit 0 of output port BA is on.
This selects a column in table 6.2. Then, the byte at input port ER (any
port in the range EO through EF will do, decimal 224 through 239) is
examined. If one of the bits is “0”, the key corresponding to that row on
table 6.2 has been pressed.

A slightly different procedure applies to the keys in table 6.3. To
scan these keys, the CPU sends a “0” to bit 0 of output port BA and all
”1’s to output port B9, while examininginput port E8. If any of the bits
are "0”, the key corresponding to that row on table 6.3 has been
pressed.

Table 6.2. “Main array” key locations in port space. Input takes
place through input port E8. If a bit is off, that key has been pressed.

INP Qutput port B9

E8 bit

bit gj{t112:3]4]5 6 7
7 LIK|I |/ |8]| Down ENTER F8
] MliJd U 71 Up PRINT E7
5 NIH|Y |, |6 Right LABEL F&
4 BiG|T] |5]| Left PASTE F&
3 VIF{R]: [4]~= ESC F4
2 CID{E}[|31~ TAB F3
1 X|s|wiPl|2i0 DEL F2
0 Z|1|AjQlOj1]9 Space F1

The Keyboard 97

3

SHI
t FT

PR
FT

l 7 E
H H
H

.
.»—W

o]] e B

PRI
MT

M
4 LABR

N
I

e e

e

e

N

(el

AT T

o pel]

’ : 4l PAS
‘N- ’H—@"N—[}_—j "JH‘ " i NUM;

el

iR

e[t

e

g WS W M

Ll el

L]

el el

-l

W e O

o[

(]

4

INEB CN
o7

ol

8

o]]

T

D5

16

b4

15

o3

14

oz

13

ol

12

ale]

CNi:

PAI PaZ2 = %] PAG PAS PAG PAT

PAC

OuUT B9

PBO

OuT BA

Keyboard array

-
@
o
T
3
2
i

98 inside the TRS-80 Model 100

Table 6.3. Modifier key locations in port space. Input condition:
assumes bit 0 is off at output port BA, Input takes place through
input port E8. If a bit is off, that key has been pressed.

Input

port

BA

Bit Key

7 BREAK

6 Always one {no key at this location)
5 CAPS

4 NUM

3 CCDE

2 GRPH

1 CTRL

0 SHIFT (either or both keys)

To see how rows and columns are scanned, enter and run the
program shown in figure 6.2.

100 FOR I=0 TO 7: QUT 177,255 XOR (2 A 1}
A=INP(224): IF A=255 THEN 200

150 PRINT "Table 6.27;f, 255 XOR A

200 NEXT ¢

201 OUT 178,0: A=INP(224): I[F A=255 THEN 300

202 PRINT "Table 6.3,7255 XOR A

300 GOTO 100

Figure 6.2, BASIC program demonstrating key scanning.

When you run this program and press a key, the column and row
fromtable 6.2 and table 6.3 are printed. The rows are designated by the
numerical value of the bit. For example, 128 means bit 7.

Sometimes all you want to know is whether a key has been
pressed. This can be accomplished by sending a "0” to output port B9
and a ”0” to bit 0 of output port BA. If input port E8 has the value FF¥
(255), a key has not been pressed. You cansee thisinfigure 6.1. Sending
"0’s” to the output port sets all nine columns low. If a key had been
pressed, then one of the eight data lines at the input port would be low,
or logic ”0”. The numerical value of the input port would be something
other than all “1’s” (FF, or 255 decimal).

The Keyboard 39

In most circumstances the CAPS, NUM, CODE, GRPH, CTRL,
and SHIFT keys are intended to generate a character only in conjunc-
tion with a key inthe main array. It is often adequate to send ali "0’s” to
output port B9, leaving bit 0 of output port BA at its present “1” state.

Multiple-Use Ports

Output ports B9 and BA serve many functions besides keyboard
scanning. All of the bits of cutput port B9, for example, are used in
keyboard scanning and for line printer output and LCD control. One
of the bits is used for serial output to the clock/calendar chip. Bit 0 of
output port BA, which is used for keyboard scanning, is also used for
LCD control. The other bits of output port BA serve other functions.

Because of the mulitiple uses of ports, two precautions are in erder
if you are to do your own keyboard scanning. Avoid interfering with
other functions, when using output port BA. Do not disturb bits 1 to 7.
This is done by reading in the contents of the output port through input
port BA, changing bit 0 through AND and OR statements, and send-
ing the new value out to port BA.

The other precaution is to avoid letting other functions interfere
with keyboard scanning. Here is a keyboard input routine that checks
if the CTRI-BREAK combination has been pressed:

7D44 3E EC MVIAEC LDAEC
7D46 D3 BA OUT BA :OUT (BA),A
7D48 3E FF MVIAFF LDAFF
7D4A D3 B9 OUT B9 :OUT (B9}).A
7D4C DB E8 IN E8 JIN A,(EB)
7D4E E6 82 AN| 82 :AND 82

This is the routine used upon power-up or reset to determine
whether CTRL-BREAK was pressed at the moment the power was
turned on or at the instant the RESET button was pressed. If so, all
R AM files are wiped out and the Model 100 reinitializes all of memory.

The value EC at 7D44 is chosen carefully to avoid turning the
power off unintentionally. It activates the modifier column of the

100 Inside the TRS-80 Model 100

keyboard. The value FF at 7D48 keeps all the keys in the main array
out of the scan. The input value received at 7146 is ANDed with 82 to
select bits 7and | of table 6.2. The accumulator is zero only if both the
CTRL and BREAK keys have been pressed.

Suppose that an interrupt were to occur between the time of
execution of lines 7D46 and 7D4C. The interrupt routine might easily
change the contents of output port B9 or BA, allowing keys other than
CTRL and BREAK tosatisfy the AND &2 test with disastrous results.
It is for this reason that interrupts were disabled at line 7D33.

For those who use the published ROM calls for keyboard input,
the routines contain the necessary protections to safeguard against a
problem arising from the shared use of ports B9 and BA. If you do your
own keyboard scanning, however, you should disable or mask inter-
rupts for crucial inputs as discussed in chapter 15.

Keyboard ROM Calls

Radio Shack has published two sets of ROM calls— calls to
collect characters from the keyboard and calls to set up the function
keys,

Pressing keys provides characters to the Model 100 only if the
CPU is paying attention. For keyboard input in the Model 100, it is not
necessary for the main program to scan the keyboard repeatedly or
even toscanitat all. This is because the CPU is sent a TP (timing pulse)
signal from the clock/calendar every four milliseconds. The routine
executed by the CPU upon arrival of the TP interrupt includes a
keyboard scan. As you will see in chapter 15, the TP interrupt is
serviced by the CPU only if interrupts are enabled and if the TP
interrupt is unmasked.

When the interrupt routine finds that a key, or more accurately a
key-combination has been pressed, the corresponding ASCII code is
calculated, There are 128 standardized ASCII values, ranging from
zero to 127. The ROM routines return the ASCII value in the A
register, which can contain 256 possible values. The Model 100 defines
key-combination values for all 256 values. There are 269 key-
combinations defined for the Model 100. The additional thirteen pos-
sibilities are also returned in the A register but with the carry flag on.
These "pseudo-ASCII” values are listed in table 6.4.

The Keyboard 101

Table 6.4. Pseudo-ASCII values for certain keys.
(Radio Shack publication 700-2245 gives these values incorrectly.
This table should be used instead.)

value in key pressed
accumulator

f1

f2

3

f4

5

6

7

8
LABEL
PRINT
SHIFT-PRINT
PASTE

TPTOONRON B WN O

When keyboard scanning occurs as a result of the TP interrupt,
the character returned, if any, is stored in a buffer. This is sometimes
called a queue. Keyboard scanning is not the only way characters are
loaded into the buffer. Pressing PASTE, or any of the eight function
keys, also causes characters to be loaded into the buffer.

If a key is pressed long enough to activate the repeat action, about
one second, the ASCII value for that key will show up in the buffer
many times.

When characters are loaded into the buffer they do not, in and of
themselves, end up on the LCD screen. The main program must
arrange for characters to be displayed on the screen if that is desired.
Routines to accomplish this are described in chapter 13.

KEYBOARD INPUT ROM ROUTINES

Perhaps the simplest of the keyboard input routines is one which
bears a striking resemblance to the BASIC function INKEYS. This
routine, named KYREAD and called at 7242, determines whether, at
the time of the call, any key combination is being pressed.

If no meaningful key combination has been pressed, the routine
returns with the Z (zero) flag on. If the Z flag is off, a character has been
received, and its value is found in the accumulator. If the C (carry) flag

102 Inside the TRS-80 Model 100

is on, the value in the accumulator is not an ASCII value but is instead
a pseudo-ASCII value and should be interpreted according to table
6.4. This routine is somewhat like the Model I/111 routine KBCHAR
at 002B.

You may wonder why the routine is defined as responding to
"meaningful” key-combinations. Just because a key was pressed at the
time of the scan does not mean the result will be located in the
accumulator. For example, if GRPH-G is pressed, the routine still
comes back with the Z flag on. This is because GRPH-G is not
meaningful, Table 6.5 shows this. If you want to be able to detect a
GRPH-G, you will have to scan the keyboard yourself, as described
earlier in the chapter.

Sometimes you may want to know if a key has been pressed since
the CPU last received a character from the keyboard. This can be
accomplished by CHSNS, called at 13DB. Upon return from the
routine, if the Z flag is set, no keys have been pressed.

Assembly language programmers often wish to assign special
significance to two ASClI values, 03 hex and 13 hex, because they have
special meanings in BASIC. The value 03 hex, associated with CTRL-
C and SHIFT-BREAK, is often used to terminate the program in
progress. The value 13 hex, associated with CTRL-S and PAUSE, is
often used to temporarily suspend the function is progress, such as
scrolling of the screen. A routine is available to determine whether 03
or 13 have been typed. The routine BRKCHK, called at 7283, returns
with the C flag set if either character has been received and reset if
neither has been received.

The routine KEYX, called at 7270, combines the functions of
BRKCHK and CHSNS. If the Z flag is set, no character has been
received. If the Z flag is reset, at least one character has been received.
If the C flag is set, a CTRL-S or CTRL-C has been received.

If you learn that a character resides in the keyboard buffer, you
must obtain the character. This is done by calling CHGET at 12CB. As
in the case of KYREAD, the condition of the carry flag indicates
whether the value returned in the accumulator is to be understood as
ASCII or pseudo-ASCIL

;lx;(,‘;-;;;,}z&;;;;w;;@

The Keyboard 103

CHGET has one other use. If no character is in the buffer,
CHGET causes the computer to wait until a character is typed before
returning control to the calling program. In this respect, it is somewhat
like the Model 1711 KBWAIT routine at 0049. Put another way, if you
do not want to wait for a character, but simply want to process any
pending buffer entries, you should check the buffer first (using CHSNS
or KEYX) and not call CHGET unless something is there.

A related but unpublished routine 15 located at 5D64. This routine
performs the CHGET function and converts the results to uppercase.

Calling CHGET to retrieve a character from the buffer does not
cause the character to be displayed on the screen. The interrupt routine
that collects the character and places it in the buffer does not put it on
the screen. If you want it to appear on the screen, you have to put it
there yourself. This is a complicated task because the entry can be a
delete or backspace or another character that requires special attention.

Often you may want to receive a line of characters from the
kevboard, terminated bvan ENTER (carriage return, ASCII value 0D
hex). This could be accomplished with the routines described above
but doing so would invelve calling routines repeatedly and checking
each character to see if it is an ENTER.

The routine INLIN, called at 4644, performs this task, The line
that was typed appearsina RAM buffer starting at F685. This routine
is somewhat like the Model [/11] routine KBLINE at 0040.

As the line is typed, the user is able to correct characters with the
left arrow, backspace, or CTRI-H. [t is also possible to erase the whole
line with CTRL-U and start over. All characters are displayed on the
screen. The INLIN routine is used in the BASIC LINE INPUT com-
mand (at 0C5F) and is used to collect the user’s input in response to the
BASIC Ok prompt at 351D, the TELCOM prompt at 516A, the Term
Width: prompt at 535D4, and the ADRS and SCHEDL command lines
at SBD2.

Label Lines and Functioning Keys

When a function key (f1 through {8) is pressed, a string of charac-
ters associated with that key is loaded to the keyboard buffer. It is
possible for the user to change the strings assigned to these function

104 Inside the TRS-80 Model 100

keys by calling STFNK at SA7C. Before calling the routine a so-called
“f-string” sequence must be set up, and the HL register must point to
(contain the address of) the sequence. The sequence must besetupina
precise way; it is composed of eight {-strings, where cach f-string is
made up of sixteen or fewer characters. If it is made of fewer than
sixteen characters, the last character must have bit 7 turned on.

Only the lowest seven bits of the f-string will be displayed on the
screen and (when the function key is pushed) loaded to the keyboard
buffer. Asa result, the CODE and GRAPH characters may not appear
in an f-string. (The only exceptions are GRPH-SHIFT-hyphen and
GRPH-SHIFT{, with ASCII values 124 and 126 decimal, respec-
tively.)

However, all ASCII values up to 127 decimal may appear in an
f-string including such exotic characters as CTRI-G, which appears as
the "beep” when sent to the screen.

Let’s look at a typical f-string sequence, the TELCOM label line,
shown in table 6.5.

Table 6.5. TELCOM label line setting

5155 2t 51 LXI HL51A4;LD HL51A4
5158 CD7C5A CALL 5HA7C

51A4 46 69 BE 64 ;Find”

51A8 AQ :space with bit 7 on
51A% 43 61 8C 6C Call”

51AD AO

51AE 53 74 81 74 J"Stat”

51B2 AD

5183 54 65 72 6D STerm”

51B7 8D 'ENTER with bit 7 on
51B8 80 80 80 15, 16, f7 empty
51BB 4D 65 6 75 PMenu

51BF 8D

This table illustrates a few points about function key labels. If
alter pushing the function key, the function is to be processed imme-
diately, a command line terminator like ENTER is required. Thisis the
case with function keys f4 and f8.

The Keyboard 105

If, on the other hand, the user can enter characters before pressing
ENTER, one may turn on bit 7 of the last label character or append a
space with bit 7 on. This the case with function keys fI, {2, and i3.

Finally, if the value 80 is specified for keys that are to be blank,
such as keys 5, {6, and {7, the ROM routine CLRFNK at 5F79 loads
80 to all eight keys, resulting in a clearing of all the function keys and
labels.

Once the labels are set, other routines cause therm to be displayed
on the screen — DSPFNXK at 42A8, or erased from the screen
ERAFNK at 428A.

The actions of STENK and DSPFNK are combined in STDSPF,
at 42AS5; this routine, like STENK, requires that HL be set to point to
the f-string sequence.

The RAM location at F63D is used as a label line enable flag. If it
is nonzero, the label line is considered to be enabled. (The flag is set at
443B.) The routine FNKSB at 5SA9E will cause the function key labels
to be displayed (by calling DSPFNK) only if F63D is nonzero.

Function key f-string sequences in ROM include BASIC at 5B46;
ADRS and SCHEDL at 5D0A, and 5D1E; TELCOM at 51 A4, 5443
and 5SD2B; TEXT at 5E15; and a sequence to clear all labels at 5B3E.

ROM KEYBOARD SCANNING

Several tables are stored in ROM which are used to convert the
key closures to ASCII values. Consider first the keys in the first six
columns of table 6.1 (except the four arrow keys). These forty-four
keys, alone and when modified by the SHIFT, GRPH, and CODE
keys, account for the majority of the possible ASCII values returned by
INKEYS orthe ROM calls. The decoding is done with the aid of a table
located in ROM at 7BF1 to 7CF8.

For any of these keys, the ASCII value is located at the memory
location pointed to by the sum of the following decimal numbers:

e 31729 (start of table)
¢ bit number 0-7 found to be turned off atinput port 232

® gight times the bit number 0-7 turned off at output port
185

106 inside the TRS-80 Model 100 The Keyboard 107
Table 6.6. ASCI!I values for SHFT, GRPH, CODE keys

GRPH- CODE-
* if SHIFT key pressed, add 44 Key | Unshifted Shift GRPH Shift | CODE | Shift
e if GRPH or CODE key pressed, add 88 or 132

respectively. : ’ 39 34 140 0 160 164
: ' 44 60 153 248 188 221
This ROM table was used to generate table 6.5, which shows the - 45 95 a2 124 197 167
effect of SHFT, GRPH, and CODE keys on the above-mentioned ; 3? gg ig; 24; ?gz g
forty-four keys. 0 48 41 125 0 1751 166
The ROM table contains a number of zero entries, e.g. CODE— 1 49 33 136 295 192 208
SHIFT-z. This does not mean that the INKEYS value for that combi- 2 50 64 156 226 0 0
. . 3 51 35 157 227 183 209
nations of key-presses is CHR$(0). Instead INKEYS returns a null p 2 2 158 et o o
string ("”). One way to get a CHR$(0) is with the input CTRL-SHIFI-2. 5 53 a7 159 599 0 o
Portions of this table are used in several ROM routines, at 718E, 8 54 94 180 230 0 0
7 65 38 176 0 196 212
7195, 71A0, 71B2, and 720D, g o ph 163 0 lo 2

. f 4
Decoding of Function Keys | 9; o - 132 I ;?g 2
. } . = 61 43 141 0 190 168
Decoding of keys in the last two columns of table 6.2 1s accomp- [91 93 96 128 181 0
lished in similar fashion with ROM tables at 7DOB (for SHIFTed keys) a 97 85 133 235 182 177
and 7D10 (for unSHIFTed keys). To obtain the values returned by b 93 66 149 0 0 4]
ROM call KYREAD or CHGET you must subtract 64 from the value ; 130 g; 133 gg? :g; ;“17;
in the ROM table. e 101 69 143 233 198| 214
f 102 70 1360 238 0 191
Decoding the Directional Arrows g 103 71 0 253 0 0
h 104 72 134 251 4] 0
The directional arrows take on differing vaiues depending on i 105 73 142 243 199 213
whether the SHIFT or CTRL keys are pressed. Table 6.7 shows the j 106 74 ¢ 244 203 219
. k 107 75 155 250 201 217
values and locations of lookup tables. ; 108 76 154 49 202 018
m 109 77 129 246 0 165
n 110 78 150 0 205 0
o 111 78 152 242 183 178
p 112 80 128 241 172 0
q 113 81 147 23 200 216
t 114 82 137 234 0 170
5 115 83 139 236 169 185
t 116 84 135 252 ¢] 186
u 117 85 145 240 184 178
v 118 86 0 0 189 222
w 119 87 148 232 0] 0
X 120 88 131 239 161 223
y 121 89 144 254 204 220
z 122 90 0 224 206 0

108 Inside the TRS-80 Model 100 The Keyboard 109

Table 6.7. ASCII values for Arrow keys _ Table 6.8. INKEYS keystroke combinations
ROM Table’ _
Left Right Up Down | Location Decimal Hex LCD INKEYS$
Unshifted 29 28 30 31| 7b1B 1 et CTRL-a SHIFT-Leftarrow
SHIFT 1 6 20 2 | 7007 2 o2 CTRL-b SBHIFT-Downarrow
CTRL 17 18 23 26 | 7D2F 3 a3 CTRL-c
4 Q4 CTRL-d
3 a5 CTRL-e
6 RE CTRL—-f SHIFT-Rightarrow
Nums Decoding 7 o7 CTRL-g
Certain keys take on alternate meapings when the NUMS key i.s g gg g;gt_:‘ $:§p
down. The routine to convert such keys is located at 7233-7241, and it 10 2 CTRL-
uses a table at 7CF9-7D06. Assuming the key pressed has already been 11 o8 CTRL—K
decoded to ASCII, the lower-case value is compared to the value at 12 ac CTRL—-1
7CF9, 7CFB, and so. If there is a match, the value immediately 13 2D CTRL~m ENTER
following (7CFA, 7CFC, etc.) is substituted. 14 oE CTRL-n
15 oF CTRL—-o
Arriving At A Particular INKEY$ Value 16 1@ CTRL-p
. 17 11 CTRL—-q CTRL-Leftarrow
The question often arises what combination of keystrokes will 18 12 CTRL-r CTRL-Rightarrow
produce a certain INKEYS value. The ASCII table given in the Radio 19 13 CTRL-%
Shack manuals is incomplete and incorrect. The correct and complete 20 14 CTRL—t SHIFT-Uparrow
repertoire of keystrokes is given intable 6.8. Note, for example, thatin 21 15 CTRL-u
some cases (e.g. 1,2, 6,8,9, 13, 17, 18, 20, 23, and 26) more than one 22 16 CTRL-v
combination of keystrokes will produce a given INKEY§ value. 23 17 CTRL—w CTRL-Uparrow
e4 18 CTRL—-x
25 19 CTRL-y
2& 16 CTRL—z CTRL-Downarrow
27 1B ESC
28 1c Rightarrow
29 1D Leftarrow
30 1E Uparrow
31 iF Downarrow
3e 20 Space
33 21 ! SHIFT-1
34 c2 " SHIFT-*
35 23 #* SHIFT-3
* Subtract 64 from table values. 36 24 $ SHIFT-%
37 235 % SHIFT-3

110 inside the TRS-80 Madei 100 The Keyboard 111

Decimal Hex LCD INKEYS : Decimal Hex LED INKEYS
38 26 & SHIFT-7 . 76 4C L SHIFT-1
33 27 - - 77 4D M SHIFT-m
49 28 ¢ SHIFT-9 | 78 4E N SHIFT-n
41 29 p) SHIFT-@ . 79 4F 0O SHIFT-o
42 2R %X SHIFT-8 : 80 S0 P SHIFT-p
43 2B + GSHIFT-= E Bf St @Q SHIFT-q
44 2C . . 82 S2 R SHIFT-r
45 2D - 83 S3 S SHIFT-a
46 2E . . 84 %S4 T SHIFT-t
47 2F 7 ; 85 8% U SHIFT-u
48 3@ @ @ NUM-m - 86 S vV SHIFT-v
43 31 1 1 NUM-j L 87 57 W SHIFT-w
5@ 32 2 2 NUM-k i 88 =8 X SHIFT-x
St 33 -3 3 NUM-1 . 89 S9 ¥ SHIFT-y
52 34 4 4 NUM-u E 39 SA 2 SHIFT-z
53 35 S5 S NUM-i £ 91 SB[
S4 36 6 6 NUM-o - 92 SC <~ BRPH--
s 37 7 7 93 SD 1 SHIFT-C
56 38 =3 & 9% SE ~ SHIFT-6
57 39 9 9 95 SF _ SHIFT--
58 3A : SHIFT-j 96 6@ -~ GRPH-I
39 3B ; H 97 61 a a
60 3C <€ SHIFT-, < 98 62 % b
€1 3 = = E 99 63 ¢ ¢
€2 3E > SHIFT-. o 1@ 64 o d
63 3F 7 SHIFT-/ o 101 65 e e
64 40 @ SHIFT-2 L @2 68 £ f
65 4! A SHIFT-a 183 67 a g
66 42 B SHIFT-b : 194 €8 h h
67 43 < SHIFT-c 105 69 i i
68 44 D SHIFT-d = 126 €A 3
€9 45 E SHIFT-e L 187 6B kK
70 46 F SHIFT-f l 198 6C 1 1
71 47 G SHIFT-g 183 6D m m
72 48 H SHIFT-h s 118 6E n n
73 49 I SHIFT-i L 111 &F o o
74 4R J SHIFT-, ; 1t 70 e p
75 4B K SHIFT-kK : 113 71 o q

£ X £ € FE a3

wo-asdBRYBH (Y- AN

L]

$-80 Model 100

-80Moget 10~

N x T < £l

GRPH-9
GRPH-SHIFT—-
GRPH-@
GRPH-SHIFT-L
SHIFT-BKEP
GRPH—p
GRPH-m
GRPH-f
GRPH—x
GRPH-C
GRPH-a
GRPH-h
GRPH-%
GRPH-1
GRPH~T
GRPH-/
GRPH-s
GRPH-!
BRPH-=
GRPH—1
GRPH-e
GRPH-y
GRPH—u
GRPH-%
GRPH—q
GRPH-—w
GRPH-b
GRPH-TN
BRPH-.
GRPH-0©

The Keyboard 113

Decimal Hex

1523 99
154 R
155 9B
156 C
157 9D
158 E
159 9F
160 AQ
161 Al
162 Ac
163 A3
164 A4
165 RS
166 R6
167 A7
168 A
169 A3
17@ RA
171 RB
172 AC
173 AD
174 RE
175 AF
176 BO
177 Bl
178 B2
179 B3
18@ B4
181 BS
182 B&
183 B7
184 BA
185 B3
186 BA
187 BB
188 BC
189 BD
190 BE
191 BF

LCD

i
i
{

R I SRR - B R

th G W

s

h =

4+

1O 0Ok IXAEBID - ¢

h]

ESTR - NS S B

B AR

N’

INKEYS

GRPH-8
CODE-SHIFT~*
CODE~-SHIFT-m
CODE-SHIFT-2
CODE-SHIFT--
CODE-SHIFT~=
CODE-s
CODE-SHIFT-r
CODE-SHIFT—c
CCODE-p
CODE—y
CODE-/
CODE~@
GRPH~7
CODE-SHIFT—-a
CODE-SHIFT-0
CODE-SHIFT~u
GRPH-6&
CODE~TC
CODE-a
CODE~o
CODE-u
CODE-SHIFT-s
CODE-SHIFT-t
CODE~-d
cobE-,
CODE~v
CODE-=
CODE~SHIFT~-f

114 Inside the TR5-80 Model 100

Decimal Hex LCD INHEYS

192 ©0 & CODE-1
192 Ci & CODE-3
194 €2 | CODE-8
195 €3 & CODE-9
196 C4 & CODE-7
197 €5 ~ CODE--
198 C6 & CODE-e
199 €7 : CODE-i
20@ C&8 & CODE-q
201 C9 { CODE-k
282 CA & CODE-1
283 CB & CODE-)
204 CC 9 CODDE-y
205 <CD & CODE-n
206 CE 5 CODE-z
207 CF & CODE-.
28 D@ A CODE-SHIFT-1
289 D1 g CODE-SHIFT-3
218 D2 § CODE-SHIFT-8
211 D2 A CODE-SHIFT-9
212 D4 3 CODE-SHIFT-7
213 DS i CODE-SHIFT-i
214 D6 & CODE-SHIFT-e
215 D7 & CODE-SHIFT-d
216 D8 & CODDE-SHIFT-q
217 D9 § CODE-SHIFT-K
218 DA & CODE-SHIFT-1
219 DB v CODE-SHIFT-j
2286 DC v CODE-SHIFT-y
221 DD & CODE-SHIFT-,
222 DE & CODE-SHIFT-v
223 DF 4 CODE-SHIFT-«x
224 E@ GRPH-SHIFT-z

225 El " GRPH-SHIFT~1
226 Ee . GRPH-SHIFT-2
GRPH-SHIFT-3
228 E4 . GRPH-SHIFT—4
2a9 ES " GRPH-SHIFT-5

The Keyboard 115

Decimal Hex

I N W A B IS |

r—--r - -

(S

#F AN VA +

INKEYS®

GRPH-SHIFT-&
GRPH-SHIFT—q
GRPH-SHIFT—w
GRPH-SHIFT-e
GRPH-SHIFT—r
GRPH-SHIFT—a
GRPH-SHIFT-s
GRPH-SHIFT-d
GRPH-SHIFT-f
GRPH-SHIFT—x
GRPH-SHIFT-u
GRPH-SHIFT-p
GRPH-SHIFT-o
GRPH-SHIFT-{
GRPH-SHIFT-
GRPH-SHIFT—j§
GRPH-SHIFT~m
GRPHR-GHIFT-.
GRPH-SHIFT~,
GRPH-SHIFT-1
GRPH-SHIF T~k
GRPH-SHIFT-h
GRPH-SHIFT-t
GRPH-SHIFT-g
GRPH-SHIFT-y
GRPH-SHIFT~c

7

UART Operation And The RS-232
Interface

This chapter examines the UART, a specialized integrated circuit
used for serial communications. The RS-232 port is also discussed in
detail. The UART is used also for modem communications, a topic
covered in chapter 8.

Parallel and Serial Data

Most communication within the Model 100 and with outside
devices is accomplished using parallel data busses. Paraliel bus refers
toa group of data paths {usually wires), which at a given instant convey
several bits of data (usually eight), each representing a one or a zero.

A serial transmission line, on the other hand, involves a single
data path, which at a given instant conveys a single bit of data.

All other factors being equal, a parallel bus conveys data faster
than a serial bus and requires less hardware per bit.

117

118 Inside the TRS-80 Modei 100 '}, UART Operation And The RS-232 Interface 119

Nonetheless, serial transmission circuitry is an essential part of
any computer, for two major reasons. First, any data to be transmitted
by audio signals, e.g. by telephone or cassette, can only be sent serially
since the medium permits only a limited number of states to represent
data values. With 300-baud modem communication, forexample, one
audio tone represents a “1” and another tone represents a “0”,

Seccondly, a serial interface was required in the Model 100 to make
it compatible with the many computers and peripheral devices that
have serial interfaces intended to meet the RS-232C standard.

In the Model 100, a universal asynchronous receiver/ transmitter,
or UART, is used to convert the Model 100’ parallel data to serial
data. A multiplexer is used to connect the UART either to the RS-
232C port or to the telephone modem circuitry.

| —=
01000 —»

CONVERTING FROM PARALLEL DATA TO SERIAL DATA o

The process of parallel-to-serial conversion is shown in Figure 7.1.
Figure 7.1a depicts an eight-bit binary word being sent down a serial
transmission line. (The term word is used in this chapter as synonym-
ous with the term eight-bit byte.) The fourth bit is just leaving the TR
(transmitter register) at the time depicted here. (The fact thatasingle 0
or I stateis in transition here is the defining characteristic of a so-called
serial bus.)

In figure 7.1b, we see that another word has been loaded into the
TR from the TBR (transmitter buffer register). Not shown in this
figure is the means by which the transmitter circuitry informs the CPU
that the TBR is now ready to accept another word.

In figure 7.1c we see, in transition, the loading of yet another word
into the TBR. At this instant eight possible 0’s or I’s are on the verge of
being communicated to the TBR. (This is the defining characteristic of
a so-called parallel bus.)

%’

0

| 000

0

PARALLEL BUS
IRRENNNN
Parallel to serial conversion

FROM CPU

FLL L PP

L

What is A UART?

UART is an acronym for universal asynchronous receiver/trans-
mitter. The parallel-to-serial process just described is termed the
transmitter function. The reception of serial data from a distant device
and conversion to parallel data is termed the receiver function. The

(a})
fb)
fc)
Figure 7.1.

120 inside the TR5-80 Model 100

adjective asynchronous means that the receiver can handle incoming
words at irregular intervals. There is no requirement that subsequent
bursts of 0’s and 1’s be separated by an unchanging interval, nor that
any warning (other than a so-called starr bit) be given that a word is
forthcoming. It is termed wuniversal because it is capable of being
programmed for any of a variety of word lengths, data rates, and so on.

As with virtually all Model 100 integrated circuits, information
enters and leaves the UART on conductors which carry 5 volts to
represent a 1 and 0 volts to represent a (. Thus the eight I’s and 0’s
depicted schematically in figure 7.1c are in reality eight voltage levels
on eight wires. (The wires are pins 26-33 of the integrated circuit.)
Similarly, the I’s and 0’s shown leaving to the transmitter to the right
represent periods of time during which a wire (pin 25) carried either a
5-volt signal or a 0-volt signal.

TIMING

Suppose a log was made of the voltage at the output of the
transmitter as time passes. What would be observed? The result for
transmission of a capital “A” at 300 baud is shown in table 7.1.

Table 7.1. Transmitter output voltage as a function
of time (transmission of uppercase A at 300 baud)

UART Operation And The RS-232 Interface 121

Before

Transmission 5 volts

Transmission

Begins .

(set t=0) G voits Beginning of start bit

t= 3.3 msec 5 volts Beginning of least significant
bit (bit 0)

t= 6.6 msec 0 volts Beginning of next bit(bit 1)

t= 23.3 msec 5 volts (bit 6}

t= 26.6 msec 0 volts Most significant bit (bit 7)

t=30 msec (and thereafter) 5 volts Stop bit or bits

Prior to the transmission of a character, the UART is putting out
a five volt signal. The UART signals that it will soon be transmitting a
word by dropping the voltage to 0 for one bit time. In the example
shown the bit time is about 3.33 milliseconds, or 300 bits per second.

(The number of bits per second is called the baud rate after J. M.E.
Baudot, a Frenchinventor who died in 1903 and pioneered in the field
of serial communications.)

The next eight bit times vary between five volts or zero volts
corresponding to the bits of the word being transmitted. For example,
the numerical value of a capital A according to the ASCII standard
codeis 65, 0or 01000001 in binary. The bits are labeled bit 7,bit6, and so
on, down to bit 0 at the right end of the binary number. By convention,
the least significant bit, bit 0, is transmitted first. Thus, for one bit time,
the output is again at five volts, Then, for about 16.6 milliseconds, the
transmitter puts out zero volts. This is because bits | to 5 of the ASCII
“A” are zero. (The 16.6 millisecond period is composed of five win-
dows, each 3.3 milliseconds long. These might have been five volts had
some character other than “A” been transmitted.)

The “I” of bit 6 is then represented by five volts for 3.3 millise-
conds followed by the 0 of bit 7, which appears as zero volts for 3.3
milliseconds.

A parity bit would appear at this point in the sequence if one was
being sent. With even parity, the parity bit is selected so as to make an
even number of 1’s in the transmitted word: with odd parity, it is
chosen to make an odd number of 1.

Finally, one or more stop bits, composed of a logic 1 (a 5 volt
output) are sent. The stop bits are indistinguishable from the period of
logic I (5 volts) that lies between the time the stop bit of this word has
finished and the time the next word begins.

The Inner Workings of the UART

The architecture of the UART is shown in figure 7.2. It is a
forty-pin integrated circuit, type number IM6402, and is designated
M22 in the Model 100. The transmit and receive rates are determined
by the TRC and RRC (transmitter register clock and receiver register
clock) signals entering the UART at the left.

Parallel data enter at the top, passing through the TBR into the
TR, through a multiplexer and then out the TRO (transmitter register
output) line.

Received data enter by way of the RRI (receiver register input)
line, through a multiplexer to the RR (receiver register), thence to the
RBR (receiver buffer register).

122 Inside the TRS-80 Modet 100 UART Operation And The RS-232 Interface 123

n The UART requires certain one-wire signals for word length
= §EE & E é (CL.S1 and CLS2), stop bit selection (SBS), and parity (PI, EPE).
[d -— - . .
= These signals are loaded (through CPU ports) as discussed in the
-————— — il 7 " 2 following section.
_I 1 @ 2 . ' .
2l 2|, g 2 o g CPU Communication with the UART
;| - -+ =S z é ‘ ‘
ay —] <z The CPU tells the UART how to configure the transmitted words
———— — — = o . .
Bk « - (as well as what sort of words to expect to receive), provides a baud rate
—l-- o ® E B 1 g frequency for the UART, gives the UART characters to transmit,
9 — — . .
ol W @ AR e = responds tothe UART’s signal that a character has been received, and
| « 8 - 5 1 - . .
o & 2 |a = learns whether any errors occurred in data reception. Most of these
| é - g s I o] & | %] | P functions take place through the CPU input and output ports; one
T e - S |® o function occurs by way of a CPU interrupt. Each of these processes will
1 L = o d x|] x . . P
el 2 Ix ul Y | = be discussed in turn.
I i2] 18 |3 ARERETS w
s a e}
NHEERE & =1 | =z SERIAL WORD CONFIGURATION
2L EERE = 5 H—‘ T3 2 . .
2 " 5:,‘ 5,12 8 Before serial I/ O can take place, the CPU informs the UART how
= a .
2\ e T% ub |2 O the transmitted words should be formed and what sort of words to
("8 wr .
5'-’| § é 2 | u expect to receive.
> > [. .
| c2 L] L |22 L{ | . * The UART parameters, namely word length, parity, and stop bit
[&2 29 ;a‘ selection, are all loaded by the CPU through output port D8, which is
listed in table 7.2 and shown in figure 7.3. Actually, any port number in
p
| o | 8 g | the range D0 (decimal 208) to DF (223) will do.
iy
| o 1 28 l«]\ R
w wl w
g — T i Table 7.2. UART and other signals (output port D8)
LH
3~
| x L. : | é Bit Function
| 2 T 5, 2 ; I 2 0 SBS (0=0ne stop bif; 1=two stop bits*)
] EP é Wz QE l e 1 EPE {0=odd parity; 1=even parity; ignored by
| 2z o R gizg i o UART if bit 2 is on.)
l ;‘_§§8 | ﬁ 2 Pl {1=no parity)
3 CLS1 {0=5 or 7 bits; 1=6 or 8 bits)
- _._1__‘_—«-”— -1-|- F——‘—W—I—-— S P = 4 CLS2 (0=5 or 6 bits; 1=7 or 8 bits)
i 5 not used
» hN 5] @ * o o
E e lq_:j & 29g= E e & 4 ~ 6 not used
@ “ e 7 not used
3
&
=

* If the character length is set to 5, SBS=1 yields 1.5 stop bits.

124 inside the TRS-80 Model 100 ! UART Operation And The RS-232 Interface 125

SETTING THE BAUD RATE

CPU selection of baud rate is accomplished by loading a divisor
into the PIO timer register through output ports BC or B4 (decimal 180

] | or 188) and BD) or BS (decimal 181 or 189).
§ Baud rate depends ultimately upon crystal X2, located near the
2 CPU, which oscillates at 4.9152 megahertz. This is shownin photo 7.1.
The CPU provides a CLK signal of 2.4576 megahertz (half the crystal
N ’J frequency) to the PIO at its TIMER IN pin. The PIO divides the
N 1l . TIMER IN frequency by the divisor previously loaded into the P1O
Sa5382888%5 2553828385 timer register. It then provides that reduced frequency via the TIMER
3 e '!T :? ET aT wT ~T anT - ngl 3‘|‘ EEEE OUT pintothe UART at both the TRC and RRC pins. (The PIO also
s gEZY 2i2gig |§ g zrggx 2 provides the TIMER OUT signal to the piezoelectric beeper for sound
iz N c22EEBEEE Wrilvrrrirkvrr generation). The UART in turn divides the PIO signal by 16 to arrive at
o @ both the transmit and receive baud rates. The divisors necessary to
N L=g = 2 @ ow é @ g g W ¢ &g produce commonly used baud rates are shown in table 7.3. Note that
- :ﬁ‘f %T gi EEREEEEEREEEE .g_nLD while most of the baud rates are exact, the PIQ output for 110 baud is
95833 ! l in error by about 0.026%. A divisor of 1396 yields a TRC/RRC value
N AT of 1760.4585 hertz, which results in a data rate of 110.02865 baud.
NN Q Table 7.3. Baud rate divisors (decimal).
Upper Lower TELLCOM
Baud PIOC Byte Byte Stat
0_\ FD Rate Divisor Port BD Port BC Value
oav - - “ 75 2048 72 0 1
10— > T 110 1386 69 116 2
| ig::: mg : 0 300 512 66 0 3
L Lol FE L E 300 512 66 0 M
sav-2 -~ « g 600 256 65 0 4
90v - ﬂ, « & 1200 128 64 128 5
R . & 2400 64 64 64 6
[C - > 4800 32 64 32 7
= 9600 16 64 16 8
. 19200 8 64 8 9
N
‘I,f " N 3 E Note that each value sent to output port BD has bit6 onand bit 7
[* g, off. This is because port BD actually performs two functions. Bits 0
i

through 5 are the upper byte of the divisor, while bits 6 and 7 determine

126 inside the TRS-80 Model 100 UART Operation And The RS$-232 interface 127

the divider mode. As mentioned in chapter 5, the timer may be set by
means of bits 6 and 7 for a single cycle of square wave (00), a single
pulse (10), a continuous square wave (01), or continuous pulses (11).
The UART requires a continuously provided frequency, so only the
latter two modes work properly. To avoid any danger of the pulse being .
too brief for the UART to pick it up, the safest thing is to use the square | | Iy
wave. Thus, the byte sent to port BD has bit 7 off and bit 6 on. :
One more CPU action, an output to port B8, is needed to provide d
the data rate clock signal to the UART. The PIO divisor must be | R
enabled (port value C3) rather than disabled (port value 43).

TG (81C53)

AD4

rersb— A5
5 aps
9. AD7
23

ADO
ADI

4
18

12

L

SERIAL TRANSMISSION

RRD
DRR
rerile ap2

rers |- aD3
8
ror 128 ADO
27
rer2 2L ap)
T8R31EE AD2
ToR4 {22 AD3
T8R5 122 Ap4a
T8RE P ADS
3z
T8R7 22 AD6
Ters22 AD7

|
TRC

RBRI
RBRZ
ABAS
RBRY
RBRE
TBRL

Before sending a character by way of the UART, the CPU must
confirm that any character in the TBR has already been received by the
TR. The CPU does this by inspecting the condition of bit 4 of input
port D8 (or DO decimal 208 or 216). That bit carries the UART signal
TBRE (transmitter buffer register empty) signal (see table 7.4). This is
shown schematically in figure 7.4a.

The UART is designed so that once a character resides in the TR q
(and will presumably be transmitted presently), the CPU can load
another character into the TBR. Presumably a certain (nonzero)
amount of time passes between the moment the “empty” signal is sent B
to the CPU and the moment the next character is provided to the 0_1 |—{>
UART. The presence of the TBR means that the UART can, upon oav — > =
finishing the sending character, have another one ready to send which : 1av -
is “waiting in the wings.” : 5N

Thus far nothing has been said about how the CPU loads the Lo i I
outgoing data into the UART. This is accomplished through output . sov o »
port C8 (or C0; decimal 192 or 200). The process is shown schemati- sav = - _{},

]I?
RRC
Mz22
IM 6402
SBS
EPE
RL
TBRE
OF

anz 2{p
! AD}-EQ CLSH

i

FE
PE

bR
TRO
RRI

i
19
25
21
20

5
14
13

24

L
E
39

AD!

RN

ADG
Lapa 2 cise

]] —] — — — —— i — —— — g

M23
40 H 244

cally in figure 7.4b.

UART data transmission

SERIAL DATA RECEPTION : I

When an entire character has been received and loaded to the
RBR (receiver buffer register), the UART indicates this by producing a
logic“1”at its DR (data received) pin. In the Model 100, this is wired to . ; |é *
the RST 6.3 interrupt pin of the CPU. As is discussed in detail in

RO %=
RF
cD
Figure 7.4a.

128 inside the TRS-80 Model 100 UART Operation And The RS-232 Interface 129

chapter 15, this causes a subroutine call to ROM location 0034, which
disables interrupts and jumps to 6DAC. The CPU obtains the received
byte through input port C8 (or C0 decimal 192 or 200). There, the CPU
places the received character in a RAM buffer, as shown in figure 7.5.

As is discussed in chapter 15, the usual ROM handling of a
received character can be circumvented by disabling interrupts or by
changing a RAM vector at F5FC,

TO (BIC55)

&

DATA RECEPTION ERRORS

ADD

TERZ FL AD!
ADS

ADO
AD

ADZ
AD3
ADG
ADS
ADG
ADT

Any number of things can go wrong in serial reception of data:

I3
18
12
un
LN
9
8
.
6
kR
TEAL B2 e e e
26

T8r3 |28 Ap2
TRRA 22 AD3
T8RS |22 AD 4
31
TBR? 32 ADB
Tera 122 an7

RRD
ORF
RBRI
RBR2Z
RBR3
RBRA4
RBRS
REBRG -
RBR7
RBRB
TBRI
TBRE

¢ The CPU could take too long to pick up a received
character

Te
TRC

* A “0” might occur when a stop bit one was expected

s Thenumber of 1'sin the received byte might differ from
that indicated by the parity bit.

l;?
RRC

Mz2

IM 6402
EPE
Pl
cLS!
cLs 2

39
35
38|
37
34
_2]
22
5
1%

{
apo —Sksas

|

: Such errors are known as overrun errors (OE), framing errors
g : (FE), and parity errors (PE), respectively. These signals are made

ADI
aAD2
{ AD3
LAD4

l

available to the CPU at input port D8 (or D0 decimal 208 or 216); the
connection is shown in figure 7.4a. The various bits of the input port
are shown intable 7.4, To obtain the UART error, the value returned at
_ the port should be ANDed with OE.

s : When a receive error has occurred, the received value at input port
C8 may or may not be correct.

|
B e

ogv
Qv
2av
L. | €£Q¥¢
-} vav
Sav
94dv
LAV

Y Y ¥

Table 7.4. UART and other signals (input port D8) (the information
contained in bit 0 varies depending on the RS-232/ modem mode)

Bit In RS-232C Mode In Modem Mode

Always 0 T=carrier detect
OE (1=UART overrun error) same

v

M23
40 H 244

Yoy

E]WZI.‘)QI}GHB

G A A A A A A A A

26

lisls Lisls s]z Jials Jiz

FE {1=UART framing error) same
PE {(1=UART parity error) same

TBRE (1=UART transmitter same
Buffer register empty)

W N e O

5 RP {0=ground at same
PHONE pin B)

RP
(o)
Figure 7.4b. UART data transmission

Continued on following page.

130 Inside the TRS-80 Model 100

Bit in RS-232C Mode In Modem Mode
6 Hobby use (O=ground same

at M23 pin 2}
7 Low-power signai same

(0= battery low)

UART Operation And The RS-232 Interface 131

Significance of ASCil Code

Mothing in the UART hardware, nor in the ROM routines relat-
ing to the UART, requires that the information sent or received be
coded according to the ASCII (American Standard Code for Informa-
tion Interchange) standard. In plain language there is no reason that
the value 32 (decimal) must represent a space nor that the vajue 65
(decimal) represent an uppercase A. You can devise your own coding
system if you desire using the Model 100 hardware to communicate.
For example, many teietype machines use a five-bit Baudot code and
many |BM machines use an EBCDIC code (Extended Binary Coded
Decimal Interchange Code), each of which assigns values different
from ASCIIto the various letters of the alphabet, numerals, and so on.

You are perfectly free within software to translate between ASCII
(used in the Model 100 keyboard and display screen) and any other
code used by a distant device.

The only exception to thisis that in the ROM UART routines, the
values 17 and 19 decimal are treated differently than the other 254
values, due to their ASCli-assigned meanings as XON and XOFF.
Many problems with XON and XOFF can be avoided simply by
disabling XON/XOFF, or one can write UART routines (borrowing
from the ROM routines) that are neutral regarding the values 17 and
19.

n
']
1= — - —
= PN o
o o
(o]
—
| ™
S — o D g~ Q o N T 0~
laocooaooada Aooooaaan
4 a4 g O < a4 I A 4 € I L L g I A
m| el =] m] o] O i
e R P RP P EREEEEEE
[T+ o o B S SRTs SN Yo N S ¢} e LI s TR~ B B+
Sy FlESisicfiEi EERisisies
= @ o o @«
1 Eow Ty oy goo R = S
o
<
o W
NUNE - ™ wl
L—for = — oW W o @ o] *
14 o 4 . 4 O Wowou x X T T
v ow oo O oo w O uw o [=I -
sl Y= T ATa d - < B B SRV VY I VI AT B o ¢ o SfOPw| ™
n!nlrﬁ|nifﬂlm IN‘“——NI = M| - lD
—= o
20283
g T a <G g
| _—

. o
ogy — >~

O

T

iy — >
<

2qy ~ >

40 H 244

cav — »
@

vay —={ »

say -4

M23

¥

@
90V —
20¢

A

iG A A A A A A A A

6 I|i?2154|36|58
MZ2a

26 Y ¥

[L

a

¥s
Ro* 2

RP

cD

e

Figure 7.5. Received UART data

132 inside the TRS-80 Model 100

The Beeper

The BEEP routine, which can be invoked by sending an ASCII 7
to the screen, works fine, regardless of what the baud rate divider is
doing. As a result, an ASCII BELL sent by the remote device beeps at
the Model 100. (This is explained in detail in chapter 9.)

ASCII Protocol — XON/XOFF

H XON/XOFF isenabled, the Model 100 will monitor the incom-
ing stream of characters for a CTRL-S. If a CTRL-S is received, the
computer will delay sending any characters until such time asa CTRI-
Q is received. Three flags are kept relating to XON/XOFF: FF40
indicates whether XON/XOFF was enabled (nonzero) or disabled
(zero) during the Stat initialization, FF41 indicates whether the Model
100 most recently transmitted a CTRL-S (nonzero) or a CTRL-Q
(zero), and FF42 indicates whether the other device most recently sent
the Model 100 a CTRL-S (nonzero) or CTRL-Q (zero).

Mode Selection: RS-232 and Modem

The UART serves as the serial-to-parallel and parallel-to-serial
convertor for the RS-232 and telephone modem interfaces. A device
termed a multiplexer connects the UART either to the RS-232 inter-
face or to the telephone modem interface. The multiplexer will be
discussed here. Then, with the assumption that the multiplexer is set in
RS-232 mode, the balance of the chapter will be devoted to the RS-232
interface. The modem mode is discussed in chapter 8,

The UART multiplexer is a handful of components set up to act
like a big six-pole, double-throw switch. The position of the switch is
determined by bit 3 of output port BA. Since that port controls many
other functions including power control (see chapter 5), one must be
careful how port BA is set. A safe setting for selecting the modem is 2D
hex, and a safe setting for RS-232 mode is 25 hex. (See for example, the
ROM code at 6EAA through 6EBS, in which these values are used.)
When the computer is powered up, the multiplexer is in modem mode.
A change to RS-232 mode is caused by any of the following: setting
Statto a baud rate other than M, opening COM: as a file in BASIC, or
loading 0 to bit 3 of output port BA directly.

UART Operation And The RS-232 Interface 133

The values switched by the multiplexer are detailed in table 7.5.

Table 7.5. Multiplexer configuration

Signal R$-232 mode Modem mode
RTS*-from RTSR-to RTSM-to
output port RS-232 pin 4 RY-2
BA, bit 7 {phone line)
TRO-from UART TXR-to TXM-to
Transmitter R5-232 pin 2 modem
Register- transmitter
output port C8 circuitry
RRIl-to UART RXR*- from RXM- from
Receiver RS-232 pin 3 modem
Register- receiver
input port C8 circuitry
CTS*-to input CTSR- from CL/AS- from
port BB, bit 4 RS-232 pin 5 SW-1
ORIG/ANS
DSR*-to input DSRR- from CP/TL- from
port BB, bit 5 RS-232 pin 6 SW-2
ACP/DiR
CD-to input logic zero RXCAR-through
port D8, bit ¢ 10K resistor

Theitems inthe column headed RS-232 mode are discussed in this
chapter; the items in the column headed Modem are discussed in
chapter 8. The circuitry of the multiplexer is shown in figure 7.6.
Curiously, the DTR signal is not switched.

Itis interesting to note that the multiplexer status is one of the few
things not preserved when a running BASIC program is powered
down, then back up. To see this, set Stat to a numerical baud rate, and
run this program in BASIC:

1 A=INF{187) AND 32: PRINT A: GOTO 1

The DIR/ACP switch has no effect on the display. Then, turnthe
computer OFF and back ON. Suddenly the switch will change the
value on the screen.

134 Inside the TRS-80 Modet 100 i UART Operation And The RS-232 Interface 135

The RS-232 Standard

RXCAR

Decades ago the Electronic Industries Association promuigated
the RS-232 standard, designed to facilitate the design of interfaces
between data terminal equipment (the Model 100) and data communi-
cations equipment (modems). (The letters RS in the designation have
nothing to do with Radio Shack.) The standard found widest applica-
tion in the connecting of teletype-like devices with keyboard and
printer {data terminals) to mainframe computers and modems {(data
sets). Typically, two directions of communication were intended and a
variety of handshaking signals were designed in so that each device
could inform the other whether it was able to receive and transmit data.

Since its origins, the RS-232 standard has undergone three revi-
sions culminating in the present version, RS-232C. (Here the designa-
tions RS-232and RS-232C will be used interchangeably.)

As we shall see, the Model 100 satisfies parts of the standard and
fails to satisfy other parts. The same is true of every computer product
on the market today.

~

v

>

@

@ =
7] W
= -
o [4

TXM:

M33
" 40H157

&

1

4

—.t
-—T]

DSR]
12

RRI
€78

R5232C
b) MODEM MODE

% MECHANICAL REQUIREMENTS
e
% The most visible aspect of the RS8-232 standard is the specified
= connector, a twenty-five-pin plug and jack in the DB style. The termi-
13 g N @ nal is supposed to accept the male connector, so the Model 100 violates
“oe x '; that requirement.
. o 9 4 . . z ‘g Most of the twenty-five pins have defined functions, but only eight
| v & E Y- = a ez i still have common use. Plugs, jacks, and cables are commonly availa-
| 1. c,| ﬂ, ble; many RS-232 cables have only a few of the pins wired from one end
T ’-{1’ A== to the other. The plug is Radio Shack catalog number 276-1547 or
+ \\ ~ 276-1559; this will plug into the Model 100. Unfortunately the hood,
\ nE 276-1549, may not be used as it will not fit into the case of the Model
N 5:1" 100. The jack is catalog number 276-1548 or 276-1565. A complete
l; il "l '“l "‘1 'l‘l s cable suitable for Model 100 use can be purchased ready-made (26~
D l PR * w 1408) or assembled by hand (276-1551, 276-1559, and 276-1563).
sloige $
E § ELECTRICAL REQUIREMENTS
i_ .§ Each signal in the twenty-five-pin connector has a specified origi-

nator and recipient, either the data set or the data terminal. Asto each

136 Inside the TRS-80 Modet 100

signal, the originator is obligated to use -5 volts or less to mean a logic 1
(or denial of a handshake signal) and +5 volts or more to mean a logic 0
(or assertion of a handshake signal). The originator must meet this
voltage requirement even under a 3000-ohm load. The originator is
forbidden to use voltages between +5V and -5V for any purpose other
than during the brief instant of transition from positive to negative, or
vice versa.

Itisa fact of the Model 100 design thatits 0 and | states are a mere
five and minus five volts, respectively. Under a 3000-ohm load, the
voltages drops to well under five volts. As a result at the other end of
the cable, the signals can easily be in violation of the RS$-232 electrical
requirements. This is not usually a problem since devices at the other
end are likely to be able to receive the signals with as little as a one-volt
swing about zero.

In the absence of a connection to the Model 160 RS-232 connec-
tor, the hardware reads all incoming signals as negative voltage, or
logic “1’s.” When an incoming signal on any of those pins becomes
more positive than about 1.5 volts, the value presented to the CPU
changestoa logic 0. (This betters the threshold promised by the Radio
Shack specification, which is 3 volts.) Thus, assuming a reasonably
short cable, one Model 100 will have no trouble detecting the plus five
volt and minus five volt signals from another Model 100.

The RS-232 standard requires that the inputs withstand as much
as positive or negative 25 volts, but according to the Radio Shack
Service Manual, the RS-232 inputs are designed to withstand only
eighteen volts. The inputs are also required to give off no more than
plus or minus two volts in open circuit; in the Mode! 100 they give off
minus five volts,

A further RS-232 requirement is that pin 7, called AB, should be
the signal ground used by each device as the zero voltage reference for
the signals originating at the other end. Each device is to use that pin as
the ground reference for the drivers sending voltages to the other end.

As a separate matter, pin 1, with RS-232 designation AA, is to be
used as a protective (earth) ground to minimize the possibility that a
person touching the chassis of the two devices would be injured by
electric shock due to a voltage difference between the two. The specifi-
cation reguires that it be possible for the user to either tie pins ! and 7
together or separate them within the computer,

UART Operation And The RS-232 Interface 137

Unfortunately, in the Model 100 the two pins are tied together
permanently. This reduces noise immunity for both directions of serial
data.

DATA FLOW

According to the standard, the data set sends out data on pin 3,
and the data terminal sends out data on pin 2. The signals are named
from the terminal’s point of view, with the pin 2 signal called BA
(transmitted data) and the pin 3 signal called BB (received data). The
Model 100 acts like a data terminal, talking on pin 2 and listening on
pin 3. (if it is to talk with another Model 100, a so-called null modem is
required, which switches lines 2 and 3 between two connectors. You
can easily make one yourself.)

HANDSHAKING SIGNALS

The terminal indicates its powered-up status and requests that the
modem access the phone line by asserting the DTR (data terminal
ready, RS-232 designation CD) signal provided to the modem at pin
20.

If the data set were a modem, it would let the data terminal know
when it is powered up and connected with the transmission line by
activating what is called the DSR (data set ready} line, pin 6, which has
the RS-232 designation CD.

Before the terminal would send a character to the modem (to be
transmitted down the phone line) it would ask permission of the
modem by activating RTS (request to send), pin 4, which has RS5-232
designation CA. Assuming the modem is able to send another charac-
ter, it grants permission by activating CTS (clear to send, pin 5, R§-232
designation CB), which 1s received by the terminal.

In the Model 100, as we shall see below, hardware provision has
been made for the signals named above. The TELCOM software and
the ROM routines ignore DSR and CTS, which come in from outside,
and assert RTS and DSR to the outside device. {When power is applied
to the Model 100, RTS and DSR are not asserted. Then when the
TELCOM program is run and the TERM mode is selected (function
key f4), RTS and DSR are both brought to a positive voltage
(asserted).

138 inside the TR$-80 Model 100

HOW THE RS-232 INTERFACE WORKS

Handshake signals and serial data enter and leave the Model 100
through the RS-232C connector, as shown in table 7.6.

Table 7.6, RS232 signals handled by the Model 100

UART Operation And The RS-232 Interface 139

RS232 Mod 100 Port
Pin,Des Symbol Source Location
1-AA {protective ground

2-BA ™ Inside Out C8
3-BB RX Outside in C8
4-CA RTS Inside Qut BA, bit 7
5-CB CcTS Outside In BB, bit 4
6-CC DSR Outside In BB, bit5
7-AB (signal ground)
20-CD BDTR Inside Out BA, bit6

These signals, according to the RS-232 convention, are negative
for a data one or non-asserted value, and positive for a data zero or
asserted value. However, the internal circuitry of the Model 100, like
all computers, uses +5 volts for a logic one and ground or 0 volts for a
logic zero level. The conversions, three incoming and three outgoing,
are performed by integrated circuit M35. The RS-232 interface circui-
try is shown in figure 7.7.

The incoming handshake signals, clear-to-send and data-set-
ready, are then made available to the CPU at bits 4 and 5 of input port
BB. A negative voltage at the input pin appears to the CPU asa zero at
the input port, while a positive voltage comes through as a one.

The outgoing handshake signals, data-set-ready and request-to-
send, are controlled by the CPU through bits 6 and 7, respectively, of
output port BA. In each case, 0 and 1 sent out by the CPU result in
positive and negative voltages, respectively.

RECEIVING RS-232 DATA

Serial data enters the Model 100 through RS-232 pin 3 and, after
level shifting and signal switching, is fed to the UART.

o
=
o

_F% IV sy
c75* _J__23% *%
‘ ATuF i 1| "8 8-2)|39,.F
) 16V | | s SOV
TXR +_"_)}_‘ 1 : I fg— 24 151
RO9I | | T4 RT3
: 5 6K M35 ! Aok 33K
I e | 4584 ! ;
cre* R78 cr2**
| 47uf ' '} ook 0.039,F
4 16V | a4 1 1 | S 50V
RTSR +—<}—‘)[-~—1‘!—(4 1 }’,__4;_ Mz24 (8)
I R94 | 1 877 R76
' 35K | 13K 33K
- | R A s
CTT* | l 1GOK CTR%E*
I aTuF AN 0.039,F
{20 v | | 50V
DT RR H}—u—-«o(l 8 Is |) - DTR
I q39 | | R8O R?79 RES
RS-232C 56K ’ 33K 33K 33K
CONNECTOR | e | nn W
| | | :
R89 I | R137 av
DSR& F’ ?fx I ”bo ’ ‘E‘OK v M33(011}
D9
| omss 1y |
o
| r88 1 : R138
CTSR %5 A : 9:.D° E o M33(5)
DIO
] e | | O rs
| | | »
I R87 1 I RI13%
RxR %’ ek 1'3 2 : e M33(2)
R92 -
| 18x I | lDSBZOTG {N.P)
l, . b ** mviaR
GND -5y &

Figure 7.7. RS-232 interface

140 Inside the TRS-80 Model 100

TRANSMITTING RS-232 DATA

The serial output from the UART goes through switching circui-
try to RS-232 level shifter M35, and from there to RS5-232 pin 2.

PUBLISHED ROM SUBROUTINES

The UART baud rate can be set by the routine BAUDST, called at
6E75. Prior to the call, H contains a numerical value in the range of 1
through 9, and the routine sets the baud rate using a ROM table at
6E94 through 6EAS5. The table address used in the load is stored in
FF8B. Note that the routine will not work properly if H contains
undefined values, such as ASCII values for characters | through 9 or
M. The routine extends to 6E93.

The routine INZCOM, called at 6EA6, performs the baud setting
function of BAUDST and configures the UART for word length,
parity, and so on, Prior to the call, H must contain the baud rate
number, just as with BAUDST. In addition, L must contain “1’s” and
“0’s” to select the UART parameters desired, from table 7.2. (Some
Radio shack documentation is incorrect on this; table 7.2 should be
used.) The condition of the carry flag determines whether the routine
sets the multiplexer for RS-232C (if carry is set) or modem mode (if
carry is reset). The routine initializes a UART data-received buffer,

1t does not matter what bit values are chosen for bits 5 through 7
of the L register; the hardware ignores them and the ROM routine
trims them off anyway.

The routine SETSER, called at 17E®6, sets the baud rate and
UART word length parameters based on an ASCII text string similar
to the one which follows the device designator COM: or MDM.:.. The
routine also initializes a UART data-received buffer, and updates a
flag located at FF42 controlling XON/XOFF. A zero at FF42 means
XON/XOFF is enabled; a nonzero value means it is disabled.

Before calling the routine, HL must point to the ASCII text string.
The carry flag determines whether the routine switches the multiplexer
to RS-232 or modem mode, just as in the INZCOM routine. If modem
mode is to be used, the D register must be loaded with the value of two
prior to the call, and the text string must start not with the baud rate
“M” character but with the word length digit.

UART Operation And The RS-232 Interface 141

The correctness of the text string is fully checked, and the alpha-
betic characters can be uppercase or lowercase. When the routine
finishes, if the Z flag is set, something was wrong with the text string.
Otherwise, you may assume the baud rate and parameters are set,
There is no need for the string to end with a zero, as the routine simply
reads enough bytes to get what it needs.

This routine updates the storage location STAT, at F65B through
F65F, which contains in ASCII format the Stat information, baud rate
(M if modem), word length, parity, stop bits, and XON/XOFF switch.

The routine CLSCOM, called at 6ECB, deactivates the RS-232 or
modem circuitry. More precisely, it “un-asserts” RTS, if it isin RS-232
mode. If in modem mode, it simply hangs up the phone. In either case,
it “un-asserts” DTR.

The routine RCVX, called at 6D6D, checks the UART data-
received queue to see if any characters have been received since the
queue was last emptied. The A register contains the number of charac-
ters in the queue, and the Z flag will be set if no received data is
pending, or reset otherwise.

This routine can be used regardless of whether the Model 100 is in
RS-232 mode or modem mode.

The routine RV232C, called at 6D7E, retrieves a character from
the UART data-received queue. If no character was present in the
queue at the time of the call, the routine does not return until a
character is received or SHIFT-BREAK is pressed. (CTRL-C will not
cause a return; only the precise combination SHIFT-BREAK will do
50.)

The call is appropriate regardless of whether the computer is in
RS-232 or modem mode. The received character is in the A register,
and the conditions of the Z and C flags indicate whether errors
occurred. The Z flag is set if the character was received properly, and
reset if a PE, FE, or OF occurred. I the routine returned because
SHIFI-BREAK was pressed, the carry flag will be set; or reset
otherwise.

The routine SENDCQ, called at 6E0B, sends an XON (CTRL-Q,
ASCII 1 1H) character to the remote device, but only if XON/XOFF
was enabled at the time of UART initialization. (Recall the XON/X-
OFF flag at FF42 is zero if XON/XOFF is enabled and nonzero if
disabled.)

142 Inside the TRS-80 Model 100

The routine SENDCS, called at 6E1E, sends an XOFF (CTRL-S,
ASCII 13H} character to the remote device, but only if XON/XOFF
was enabled at the time of UART initialization. (Recall the XON/X-
OFF flag at FF42 is zero if XON/XOFF is enabled and nonzero if
disabled.)

The routine SD232C, called at 6E32, sends a character to the
UART to be transmitted to the remote device. The character to be sent
should be present in the A register prior to the call.

It is possible for the routine to return without successfully sending
the character. Suppose the UART takes so long to transmit (or the
other device sends the Model 100 a CTRL-S for such a long time) that
the user presses SHIFT-BREAK. The routine returns with the carry
flag set.

If the UART was originally configured with XON/XOFF dis-
abled (FF42=0) then the routine simply sends the character. If
XON/XOFF is enabled, then the routine makes a point of keeping
track (the flag at FF41) of which has been sent out by the Model 100
most recently— CTRL-S (flag=-1) or CTL-Q (flag=9).

Before you use the UART, it is a good practice to clear the UART
receiver buffer register with an input from port C8. This is done, for
example, at 6CES5.

The Telephone Modem

The Model 100’s built-in modem and autodial capabilities are
among its most popular features, This chapter consists of a discussion
of the modem and autodial feature. The hardware of the autodial,
direct-connect modem is explained first followed by a description of
the acoustically-coupled modem. ROM subroutines are included for
both types of modem,.

Data Flow Overview

Recall from the discussion in chapter 7 that serial-to-parallel and
parallel-to-serial conversions take place within the UART, and thata

143

144 Inside the TR5-80 Model 100

The Telephone Modem 145

multiplexer determines whether the UART is connected to RS-232
circuitry or modem circuitry, This is shown in functional block dia-
gram form in figure 8.1.

The multiplexer, shown here in the “RS-232" position, sends
incoming RS-232 data to the receiver portion of the UART which is
then sent to the CPU. The multiplexer also connects the output of the
UART transmitter to the RS-232 output circuitry.

If and when the multiplexer switches to the other position, the
data paths change in two ways. As shown in figure 8.1a, the UART
receiver gets its signal not from the RS-232 circuitry but instead from
the modem receiver (which in turn gets its signal from the modem
filter). The UART transmitter is connected to the modem transmitter,
which in turn feeds a wave shaper, as shown in figure 8.1b.

Assuming the multiplexer is in “modem” mode, then the
DIR/ACP and ORIG/ANS switches also have an effect on the data
paths.

The DIR/ACP switch determines whether the modem filter gets
its signal from the phone line transformer OT1 or from the electret-
condenser microphone in the earpiece cup of the acoustic coupler. In
addition, it connects the output of the wave shaper eitherto OT1 ortoa
tiny speaker in the mouthpiece of the acoustic coupler.

Finally, the ORIG/ANS switch changes the internal function of
the modem filter, the wave shaper, and the transmitter and receiver
portions of the modem integrated circuit.

TO CPU

UART
RECEIVER

MU TIFLEXER

R$-232
[——
MODEM

LEVEL SHIFTER
ORIG/ANS
'

RS-232
MODEM
RECEIVER

The various circuits shown in the functional block diagram will be = E 2 s
explained in detail, but first it will be necessary to explain a bit about ég S—+ § s
the Bell 103 standard, and about telephones generally. & =L g
=
The Bell 103 Standard _ /l» g
o bl =
All 300 baud data transmission in North America is performed - : g g
according to Bell Standard 103, which spells out the manner in which - i N 2
computers are to send [’s and 0% to each other. E_ 5. ° =
The technique used is frequency-shift keying (FSK), which means &0 I’wm = i L
that each computer produces an audio tone, and shifts in the frequency : Wy] o
of the tone indicate whether a “1” or “0” is being sent. The Bell 103 ' E:' §§ g
standard calls for each computer to transmit a “1 ™ most of the time, = f—:'

dropping the frequency by 200 Hertz whenever a “0” is to be sent.

146 Inside the TRS-80 Model 100 The Telephone Modem 147

The “1” state is called “marking,” and the *0 is called a “space™.
This terminology originated with the first teletype machines. Histori-
cally the usual circuit condition between two teletypes was a current
flow of 20 milliamperes, called a mark. Brief interruptions in the
current were called spaces. An analogy can be drawn between
frequency-shift keying and the dialing of a phone.

To this day, most telex machines use this so-called current loop
means of data communication which allows them to be interfaced with
any RS-232 device such as the Model 100, by using optoisolators.

PHONE

-

SPEAKER

PART OF

OTl

BIR
ACP

THE AUDIO FREQUENCIES

WAVE
SHAPER

In order for two-way data communication to take place, each
computer must be prepared to listen carefully to the audio tone trans-
mitted from the other device, to determine whethera*1” or “0”is being
sent. At the same time the computer must generate audio tones to send
1’s and 0’s to the other device.

Problems arise when both computers use the same tone because
each computer will hear itself as well as the other computer. The
solution is to assign different frequencies to the two devices.

When the Bell 103 standard was written, most modem communi-
cations was quite lopsided. One device was a large computer, which
answered calls, while at the other was a small device, usually a termi-
nal, which originated calls. The originating device was assigned a mark
frequency of 1270 Hertz, while the answering device was assigned 2225
Hertz. The established protocol was that the answering device, upon
answering the phone, would emit the 2225 Hertz tone. Upon hearing it,
the originating device would start producing the 1270 Hertz tone.

The two tones, known as carrier tones, were expected to be
present (at either the stated frequency or 200 Hertz down) during the
duration of the phone call. If either computer’s tone disappeared for
even an instant, the other device would assume it had been hung up on,

ORIE LANS
1

RS-232
DATA QUT

ENABLE

ORIG 7ANS
|
1
MODEM
TRANSMITTER
}
t
TRANSM!T

LEVEL SHIFTER

RS-232

RS-232
—
MODEM

MULTIPLEXER

TRANSMITTER

UART

and would disconnect itself. This is the reason that the call waiting

feature causes so much trouble for modems.
Currently in many situations (such as communications between

two Model 100%) the selection of one device as the originate device and
the other as the answer device is purely arbitrary.

FROM CPU
Figure 8.1b. Data path switching functional block diagram

148 Inside the TRS-80 Model 100

The other major standard, used in Europe, is the CCITT stand-
ard. It is similar in most respects to the Bell 103, except for the
particular frequencies used to represent 1’s and 0’s.

How Telephones Work
THE PHONE WIRES

Although standard modular telephone jacks contain four wires—
red, green, yellow and black, most telephones use only two of them, the
red and green wires. The red wire is sometimes called the ring signal,
and the green wire is sometimes referred to as the #ip signal. The terms
ring and tip have nothing to do with the ringing of the phone bell; they
come from the physical description of the barrel (ring) and end (tip) of
the two-conductor phone plugs traditionally used by switchboard
operators in connecting calls.

ELECTRICAL CONSIDERATIONS

If no phoneis plugged into the jack, orif a phone is plugged in and
on-hook or hang-up, the potential on the line will be about forty volts.
An on-hook phone represents a very high resistance across the two
wires, so that virtually no current flows.

PLACING TELEPHONE CALLS

When the phone is taken off-hook, that is, when it is picked up to
place or answer a call, the phone presents a low resistance across the
two wires. The central office detects this, and presents a dial tone or
connects the incoming call, whichever is appropriate. The low resist-
ance is typically 600 chms. With such a load on the line, the voltage
from the central office drops substantially to perhaps ten volts.

Once a dial tone is audible, the next step is generally dialing a
number. One of two methods may be used, depending on the nature of

the dial tone circuitry provided. With all dial tones, one may use rotary
dial pulses; with some dial tones, DTMF (dual tone multifrequency,
e.g. Touch-Tone} may also be used.

Rotary dial pulses are sent to the central office by repeatedly
removing from the phone line the low resistance path that was present

The Telephone Modem 149

when the phone was taken off-hook. In a traditional rotary-dial phone,
this is accomplished using a simple mechanism of springs, gears and
switches. With many modern pulse-type, pushbutton phones, solid-
state circuitry mimics the dial mechanism.

There is nothing mysterious about the action of the telephone dial.
It merely hangs up the phone (places it on-hook) one or more times for
only a fraction of a second. You can do this manually with any phone
by simply tapping the hang-up button. (The on-hook and off-hook
times should last about 65* and 35* milliseconds, respectively.) Aftera
pause of about 300* milliseconds, the next digit is dialed.

ANSWERING TELEPHONE CALLS

Now that the number has been dialed, let’s examine what takes
place when the phone rings. The central office causes a phone to ring by
sending AC (alternating current) at perhaps forty or fifty volts to the
phone jack. The telephone uses a coupling capacitor to allow the AC to
ring the bell.

RINGER EQUIVALENCE

The amount of energy absorbed by a device connected to the
phone line when the ringing voltage is present is reflected in the ringer
equivalence number (REN) of the device. An REN of 1 means the
device takes as much power as a traditional Western Electric phone.
The Model 100 has a REN of zero, because when relay RY2 is open the
computer has no current path capable of absorbing an appreciable
amount of the ringing energy.

Simply taking the phone off-hook signals to the central office to
stop sending the ringing voltage and to connect the calling party.

THE DIRECT-CONNECT MODEM AND THE TRANSFORMER
OoT1

The Mode! 100 uses the red and green wires for direct-connect
modem operation. The red wire enters through pin 7, as shown in
figure 8.2

* For 20 pulse-per-second dialing, all these times are divided by two.

150 Inside the TRS-80 Model 100 The Telephone Modem 151

14 . .
€ & = Two relays control the direct telephone conections of the Model
Y - 5 100. Thoughitis normally open, relay RY2, when energized, connects
S‘;i 22y ‘é’oé the primary side of isolation transformer (JT'1 to the tip and ring
T3 o o

signals. Relay RY3, which is normally closed, makes the connection
between the telephone instrument and the telephone line. Relay RY2
accomplishes the resistance transition from infinity down to six
hundred ohms to pick up the phone, and to dial phone numbers. Relay
RY2 could be termed the hookswitch relay.

Recall that modem cable 26-1410 has two modular plugs, with
beige and silver cords. The beige cord plugs into a modular jack,
bringing the tip and ring signals to pins 3 and 7 as mentioned above,

G389
33n

2502603

The ring signal at pin 3 goes directly to the phone instrument (if
connected) through the red conductor of the silver modular cord. The
T T tip signal from the beige cord enters the Model 100 at pin 7 and is
ix usually fed through relay RY3 to pin i. (These signals are summarized
= —_ in table 8.1.) From there the tip signal passes through the silver cord’s
- g @* - green conductor to the instrument.
£ & f
- ~ g i L,L_ : Table 8.1. Phone jack pin designations.
[=] : "
s L— Pin Designaticn | Function
x @ A
g 5 b
g . 1 TL Green to phone instrument
é o : 2 GND Ground reference
3 RXMD Red from phone line
S _ _ (“ring” signal}
T) N . . i also goes to phone instrument
O O -0 : 7 4 RXMe From coupler earpiece
] ¢ =+~ T 3 § : E 2 1 electret-condenser microphone
| zy ! 5 TXMe To coupler mouthpiece
o
| §’§ ‘l vbD +5V for coupler amplifier
' 7 TXMD Green from phone line
("tip” signal)
8 RP Ring pulse signal (see text)

Figure 8.2. Direct connect interface

152 Inside the TRS-80 Model 100

When direct-connect modem data transmission is desired, it is
necessary to energize both relays. (This is accomplished by the TEL-
COM software.) This conects the phone line to the modem circuitry
and disconnects the telephone instrument to avoid interference if the
phone is picked up. It is impossible, of course, for the Model 100 to
protect against interference caused by picking up an extension phone
on the same line, or from problems caused by loss of the audio carrier
signal such as a call-waiting beep.

When TELCOM is used as an automatic dialer for voice conver-
sations, relays RY2 and RY3 are both energized. Relay RY2 is left
open for about a second to insure that any previous call is disconnected
and is then turned on again. After allowing a couple of seconds for the
dialtone to arrive, RY2 is repeatedly switched on and off to simulate a
rotary telephone dial. Then both relays are de-energized, leaving the
phone instrument connected to either ringing or a busy signal,

The dialing process is simple. To dial, say, a “4,” relay RY2 is
switched off and on four times. ,

RING PULSE

Provision has been made for the Model 100 to be expanded into
anautoanswer device. This prospect is discussed further in chapter 17.

FCC CERTIFICATION

On the bottom panel of the Model 100 are labels describing two
kinds of FCC certification, The first, which bears FCC identification
number AWQ9SB26-3802, indicates that the computer has been tested
and found to be sufficiently shielded. This means that it does not
radiate in excess of levels of radio frequency (RF) energy set forth in
part 15 of the FCC rules. The most noticeable part of the shielding is a
foil panel, resting between the main printed circuit board and the black
plastic at the bottom of the case,

The other FCC certification, number AWQ9SB-70372-DT-R,
pertains to the physical and electrical qualities of the circuitry shown in
figure 8.2. The standard used is referred to in part 68 of the FCC rules,
which requires that the computer must not interfere with the ability of
other phone customers to place their calls and must not generate any
voltages that might injure telephone workers.

The Telephone Modem 153

Neither of these FCC certifications establishes that the computer
does a proper job of dialing the phone nor does it even indicate that the
computer will function when it is turned on. (An empty box would also
satisfy both FCC requirements and would in fact be easier to get

certified.)
MODEM DATA FLOW

The incoming modem signal passes through a filter composed of
six operational amplifiers, shown in figure 8.3. The filters remove
almost everything except the energy in the neighborhood of the fre-
quency of the incoming carrier, In the originate mode, this is 2025-2225
Hertz; in answer mode thisis [070-1270 Hertz. (Transistors T2, T3, and
T35 affect the frequency change in the filter.) The resulting signal,
designated RXCAR, varies between (0 and 5 volts and wiggles up and
down at the same frequency as the received carrier. It goes to the
modem chip and appears as a “1” {about half of the time} at bit 0 of
input port D8. The CPU cancheck to see if the carrier is being received
by noting whether RXCAR keeps changing (carrier present) or
remains constant always 0 or always 1 (carrier absent).

THE MODEM RECEIVER

The output of the modem filter goes to the modem integrated
circuit, shown in figure 8.4, It accepts the signal from the modem filter,
which ranges from 0 to 5 volts, and which varies in frequency. Based on
the position of the ORIG/ ANS switch, it interprets the signal to yield
serial digital data. For example, in the originate mode, if the RXCAR
signalis 2225 Hertz, the madem chip will send a logic “1”to the UART
on the RXMi line.

The internal structure of the modem chip is shown in figure 8.5.
The fype input, at pin 14, can configure the chip for CCITT frequen-
cies. For conversion to CCITT, however, the Model 100 would also
require changes in the modem filter and wave shaper.

The modem chip includes a pin, TTLD, which reduces power
consumption in the chip when, asin the Model 100, itis connected only
to CMOS components.

155

The Telephone Modem

154 Inside the TRS-80 Model 100

80 4804
LNdNT OL

2 WIIOW
04

a.0251 A0
6zg ¥

rav
15 M

AD

/s

s L
Z

o il
Criu
Z

s
S
-~

—ll—s

2 E j
o]
= 500 o
@ ~ O W
Tm | ™
™
0 x
T 0
o
“on |
g Lo wwpon ol -
ke > a4 W [W = L = =
X - pF o W 5 x
o > 2z o - [
M =< () v
v
™o
s == - - —
“w =
Tz %
o« o
™ =] o] - jepe
i - T 5
~ r =
< W
-0 = o
wa o 2
OO 2 . o i
@ z = <
<3 = o = O
> @ x
= _ @
4
T =
o< 3]
[.
Nz v O
== F -
it i
IEST §5%
oyl T
[a m.b
0Ly Al
owdo o aawn

Modem IC connections

Figure 8.4,

12113 BIEp Surwooul WApoy "g'g 9anbid

€082352
€L

ANEl
L2H

42 EE

£0%235¢

23
X0l WOt
92y a vid
4u908
Ty
IHE0 2
9i

49004 %
2v0

(THiy =

(ZH1§ -

|
THOBEE

THOEE!
30VLS PG

THOZIZ

THOG 1!
39vis pug

4600t
[§:2]
[2H] § =
INOHIOH N
| HASNIAINGD
1381331301 99
‘
o
8pl
i
THOES! 3A0W mm;mz«,,v AINTAO T 5
HO0E 300W 3LwNigwmn) SLYIGIAEILNI
39715 ISt

156 inside the TRS-80 Model 100

oy
- S
s Ty
[P
N O
T oF WS o ©
=02 o o ¢ o
2z° 35 z =
o, o dgu Tz
g
R o > P
ot - W a ow
- 1 0a & »
e [T -
o &
: g
a
5| | 2g
Sw
= ‘ oo
oz | gb
EC‘ i Ly bt
(SRS cr
3
~ T . e -
) DU s Z
wEE rLZw e ~
. & L <4 wow o -
3 a=n 420 r G
=3 o 20 aw -
I w2 QO VvoZ v
~ [O w —e o w O w =
I Fuo aw dou
8
9 w X
¥ W Ze
8% taw
SN C LR
3a 52w
Ua 22y
) L
x @.
o 5
o
a F
- L
o
0
= U
o .
’_@L)
l 1 4 1
-3
e z @
3 o o N 2 o ¥ mown o w n ~ 2 o~
UO a >D r—_u.: [4 :J w oo S wl wl — wl <[> -
a < ~U 3k o a I 3 e w >0 @
o zm Z2a g > o @ o= brs wd i
ua Yo ¥ o~ w o« o« wl e
zz Z W P x wl w
b a oa Th @ 3
~ - ot o b
=
=
Figure 8.5. Modem IC functional block diagram

The Telephone Modem 157

The resulting digital signal RXMi goes to the UART, where it is
treated just the same as in the RS-232 mode discussed in the previous
chapter.

Before modem output can be performed, the CPU must enable
carrier output by means of a “1” at bit 1 of output port A8. {For most
modems in the originate mode, the usual practice is to send out the
originate carrier signal only after detecting the incoming carrier
signal.)

OUTGOING DATA PATH

Outgoing modem data is sent by the CPU just as it was in the
RS-232 mode. From the UART the serial digital signal TXMi goes to
the modem chip, as shown in figure 8.4. The output, a synthesized
audio signal TX, is fed to the wave shaper circuit shown in figure 8.6.
There the audio volume level is set by potentiometer VR2 and is
amplified and sent down the telephone line through OT1 or the coupler
mouthpiece, depending on the position of the DIR/ACP switch.

ACOUSTICALLY-COUPLED MODEM

For acoustic-coupler operation, acoustic coupler 26-3805 is con-
nected to the Model 100 instead of the direct-connect modem cable.
When the DIR/ ACP switch SW-2 is moved to the ACP position, three
things happen.

First, assuming the Model 100 is in the RS-232C mode, bit 5 of
input port BB will be found to be 1 rather than 0. It is this bit that
allows the CPU to know that the DIR/ ACP switch has been moved to
the ACP position, although the Model 100 ROM routines never put
this information to use.

Second, the computer “talks” to the coupler rather than to the
direct-connect cable. The modem audio output signal TX is removed
from the direct-connect matching transformer OT1 and goes instead to
pin 5 of the phone jack, and from there to the acoustically-coupled
speaker that clamps to the mouthpiece of the telephone handset, The
modem cable connects to the mouthpiece cup by means of a 3/32"plug

(similar to Radio Shack cat. no. 274-289) and jack. This is shown in
figure 8.7,

158 Inside the TR$-80 Model 100 The Telephone Modem 159

Finally, the computer “listens” to the coupler rather than to the
direct-connect cable. The modem audio filter receives its input from
the earpiece of the handset via an acoustically-coupled electret-
condenser microphone, shown in figure 8.7, and not from OT1. The
microphone signal is amplified by an operational amplifier (located in
the earpiece cup) which draws upon the 5 Volt power available at
phone jack pin 6. Capacitor C3 filters ripples from the 5 volt supply,
while C2 removes high frequency pickup. Resistor R9 provides DC
power to the microphone itself, while C4 capacitively couples the audio
signal to the op amp.

The amplifier audio output is provided for the Model 100 at
phone jack pin 4. Both the speaker and microphone are grounded at
pin 2,

The acoustic coupler plug uses pins 2, 4, 5 and 6. By comparison,
the direct-connect modem cable uses pins I, 3 and 7. In each case, the
cable requires an uncommon 8-pin DIN plug which differs from a
> : standard 5-pin DIN plug such as Radio Shack carries (see catalog
number 274-003),

C ol
50V
[\?
ANS
QRIG

Ril
tK

CL/AS-
TO MULTIPLEXER

R42
23K (F)
25C2603

T4

R45
T.72K(F)

€59
3300pF
50V

hY

7

USE OF THE COUPLER

3
T

When the acoustic coupler is plugged into the Model 100, the
line-control retays RY2 and RY3 are not connected to anything. Thus
the autodialing features of TELCOM cannot be putto use, and dialing
a computer access number must be performed manually. It would have
been more efficient if TELCOM had been written to sense the position
of the DIR/ACP switch, so that when ACP was selected, the computer
would skip the autodialing process and go directly to the login
sequence. Instead in the ACP mode, TELCOM still goes through the
futile routine of dialing the phone number.

ce0
3300pF
S0V
R44
242K (F)
M30

R&3
62040

R32

220

ACP
QT

TXMe
220.F
16V
S
DR

\J/CIOS
:‘"

DIALING PROCEDURES WITH THE COUPLER

TO COUPLER

When using the coupler, one dials the phone number and then
connects the acoustic cups. When the carrier tone is audible, one choice
is to push the “Term” key of TELCOM, which establishes the connec-
tion of the Model 100’s modem circuitry to the cups. However, it would
be nice to take advantage of TELCOM’s ability to send the login

Figure 8.6. Modem outgoing data waveshaping

160 Inside the TRS-80 Model 100 The Telephone Modem 161

sequence. This can be accomplished by using TELCOM’s “Call” fea-

e > 3 a = a ture even though the dialer does not function. When TELCOM detects
'g:) YR & - 3 the carrier signal, it goes to the login sequence contained in the angle-
S %&L_,L:m L _/ii“_ E_,J\N_l brackets “<>" just as it would if the direci-connect cable had been
N h ’t attached.
o =
a RN & 1/0 PORTS
“ 25 i
N ~ z5a (0 c Most of the modem functions are in ports shared with other
E z rm “ T -I I— I —l zZg functions. One port, A8, is used exclusively for modem functions. See
& ns ~ table 8.1. RAM location FAAE contains the present contents of the
3 - e port, to facilitate changing one bit without affecting the other. Other
83 : modem I/O functions are listed in table 8.2.
s
Table 8.1. Telephone relay/modem control {output port AS8; contents at
o / FAAE)
PR F =
e § ol w x (_§ Bit Function
AAdd * AR
- 0 Telephone instrument relay {1=disconnect)
v : 1 modem transmit {1=enable)
- 2-7 not used
o /o 263
- NZ._H% - Table 8.2. Modem I/ O port functions
oM o M
e wA——4 E Port Bit Function
< 3
— § out BA 7 phone line off-hook
Gé g in BB 4 1=ANS, 0=0RIG
s G in BB 5 1=ACP, 0=DIR
ks
©me g in D8 0 Carrier Detect
W %‘ in D8 5 Ring Puise
» o 3
gn 8T E
s + 3 ROM SUBROUTINES
4] o — o <
Lk : | .
© L ————— —J L —— —J - } Foursubroutine addresses have been published for modem opera-
X ~ . . .
5§ al 13 U E o tions. Two, CARDET and DIAL, are of substantial value, while the
o < 1] _ . . R R .
5§ ™z g = = g other two are simple implementations of the IO port functions dis-
wi Z ui .
28 & g cussed earlier.

Theroutine CARDET, called at 6EEF, returns with the Z flag set
and A=001if a carrier is detected. It returns with Z reset and A=FFifno

162 Inside the TRS-80 Mode! 100

carrier is detected. CARDET, which lies in ROM at 6ED6-6F30, and
uses some rather tricky techniques. At 6EF2, for example, the value
6F2C is pushed to the stack, and if the search for carrier is unsutccess-
ful, a RET instruction results in a jump to that address, which is
halfway through another opcode. (Normally, every PUSH has an
associated POP that is always executed.)

6EES-6EED contains code which toggles the beeper during the
carrier search if SOUND is ON (i.e. (FF44) is zero).

Other published routines are as follows:

DISC Called at 52BB, disables transmission of carrier,
reconnects the phone instrument, and puts the
phone line back on-hook.

CONN Called at 52D0, takes the phone line off-hook, dis-
connects the phone instrument, and enables carrier
transmission.

DIAL Called at 532D, dials a phone number and foliows a
login sequence, just as does the “Call” button in
TELCOM. Before the cali, ML must point to the
phone number sequence.

If the sequence has a CTRL-Z, CR or LF before an angle bracket
(*<C™) the routine finishes by connecting the phone instrument; thus
DIAL may be used as an autodialer,

Upon return from the routine, if the carry flag is set, the routine
was unsuccessful, probably because the SHIFT-BREAK key was
pushed.

The dialing rate, 10 or 20 pps, is a function of the “pps” flag at
F62B.

9

Piezoelectric Beeper

Located directly under the TRS-80 top panel fogo is a piezoelect-
ric beeper. It provides an audio monitor of cassette data input and
TELCOM dialing progress and performs the BASIC commands
SOUND and BEEP.

How Piezo Beepers Work

Since the 19th century it has been known that pressure applied to
certain crystals generates electricity. This piezoelectric effect is named
after the Greek word “piezein” meaning to press. Years ago the effect
was used in crystal microphones and crystal phonograph cartridges;
one common present-day consumer application is the flintless butane
lighter, in which mechanical energy from the user’s thumb is converted
to a voltage high enough to create a spark to light the vaporized fuel.

163

164 Inside the TR5-80 Model 100

A lesser-known aspect of the piezoelectric effect is the fact that
application of electrical potential to such a crystal causes physical
deformation, such as expansion, contraction, or twisting, depending
on the shape of the crystal and the location at which the potential is
applied.

The most common consumer applications of the electrical-to-
mechanical principle are the little earphones provided with inexpen-
sive transistor radios and the high-pitched chirpers used in smoke
detectors and one-piece telephones.

It is this latter aspect of the piezoelectric effect that is used in piezo
beepers. When stimulated by a varying voltage, a quartz crystal
deforms, moving a metal disc to which it is attached. For example, a
square wave electrical signal applied to the disc produces something
approaching a square wave audio signal in the air, because of the
movement of the disc.

The conversion of electrical energy to mechanical energy in a
piezo beeper is quite efficient — far more efficient than the energy
conversion in a permanent-magnet audio speaker. This efficiency helps
to conserve the battery power of the computer.

Some piezo beepers contain driving circuitry so that they can
operate from direct current, vielding a fixed-frequency audio tone. In
its simplest form a piezo beeper is composed of little more than the
crystal and the metal disc; the beeper installed in the Modet 100 is of
this type. Figure 9.1 shows the beeper mounted on the inside top panel
of the computer, and figure 9.2 shows the beeper fully disassembled.
Wires are connected to two surfaces of the crystal.

Because the Model 100 beeper has no built-in driver circuitry, the
CPU must ensure that appropriate signals are sent to it. One result is
that the CPU can cause the beeper to produce a wide variety of audio
signals.

Piezoelectric Beeper 165

Figure 9.1. Becper position inside the computer

Figure 9.2. Beceper fully disassembled

166 insi - 1400
nside the TR5-80 Mode : Piezoelectric Beeper 167

Hardware Theory of Operation z k

The beeper module, mounted on the underside of the top panel, < o
bears reference designation P-26 and plugs into connector CN2, refer- ' T o
ence designation A-8, on the LCD printed circuit board. This is shown i L-_«————»flrm ---------------- — e
in figure 9.3. A flat cable runs from the LCD board to the main printed % ;? ,b ~ pj‘
circuit board, where it is controlled by transistor T1. One side of the ‘ .

beeper is connected to +5 volts, while the other side goes to the _ : i.___ S N L
transistor and a pull-down resistor.

When the transistor emitter-collector junction conducts, +3 volts
is made available to the BZ line; the voltage difference seen by the
beeper is small. When the transistor turns off, however, the BZ line is
effectively grounded through R113; the beeper sees about 5 volts.

Transistor T1is controlied by bits 2 and 5 of CPU output port BA
or B2; (decimal 178 or 186). Table 9.1 lists the various port addresses
associated with the beeper.

Figure 9.3, Beeper hardware configuration

Table 9.1. Port addresses associated with beeper.

{TO UART)

RRC

Port Bit Function

BA 2 Disconnects beeper from divider

BA 5 Direct beeper controt line

BC 0-7 PIO divisar- iower byte

BD 0-5 PI1Q divisor- upper byte

BD 8-7 P10 divider mode (01=square wave, 11=pulses)
B8 7 PIO divider control {Q1=stop, 11=start}

iaq

10

PARALLEL BUS
S

Mi9
80CBS

The circuitry associated with bits 2 and 5 allows the CPU to _
control the beeper in either of two ways. With bit 2 on continually, the : N
CPU can directly toggle the transistor and through it the beeper by "
means of bit 5. Alternatively, with bit 2 low and bit 5 high, the TO
(timer output) signal from the PIO controls the beeper. Bit 2 can be
thought of as a timer mask. Because it is one of two inputs to NAND
gate (M26), a logic one at that input causes the output and the beeper to
be completely unaffected by whatever the PIO timer is doing.

PORT B |—

M25
8iC55

2 45T6MH

37

4. 9152MH2
|

®

1
C
CLX

X2

LOCK
DIVIDER
(TIMER)

GENERATOR

168 Inside the TRS-80 Model 100

CPU output port BA, however, controls many functions other
than the beeper. For example, setting bit 4 cuts off all electric power to
the computer. Because of this, it is important not to inadvertently
change any bits other than the beeper bits.

Two aspects of the PIO hardware make control of individual bits
very easy. First, the present logic levels of the output port are always
available to the CPU simply by reading input port BA. Second, the
design of the PIO port is glitch-free. Any bits that are logically
unchanged as a result of loading a new port value, will remain electri-
cally unchanged, throughout the loading of the new data.

CPU Toggling

Consider the simple ROM code at 7676-767C, shown in figure 9.4,
which toggles bit 5. If bit 5 15 on, it is turned off and vice versa.

7676 DB BA IN BA AN A (BA)
7678 EE XRE 20 ;XOR 20
T767A D3 BA OUT BA ;OUT {BA)A
767C (@22) RET JRET

Figure 9.4. ROM beeper-toggling routine

The other bits of the output port are completely unaffected. Try
calling this routine from BASIC. In the immediate mode, type CALL
30326. You should hear a faint click from the beeper. Now enter and
run the following BASIC program:

1 CALL 30326 : GOTO 1

You should hear a low buzz. The time interval between clicks is
determined by the amount of time BASIC takes to accomplish the
GOTO and parse the CALL command. If the equivalent routine were
executed in machine language, the pitch would be very high, since
assembly language is so fast in relation to BASIC.

One way this subroutine is used in ROM is by generating the
BASIC command BEEP, which you can call {from a machine language
program with CALL 7662. Or, in BASIC, type CALL 30306.

Piezoelectric Beeper 169

Disassemble the code from 7657 to 767C. You will see the equival-
ent of nested FOR loops — an outer loop which determines how long
the beep will last (about 117 milliseconds), an inner loop which deter-
mines how much time passes between togglings of the transistor, and
the frequency, which is about 1 kilohertz. (The term “Hertz” is syn-
onymous with “cycles per second”.)

Let’s see how these times may be calculated. The majority of the
time consumed in the inner loop is in this subroutine:

7657 oD BCRC DECC
7658 C25776 UNZ 7657 JP NZ7657

Register decrements require four clock eycles. Conditional jumps
take seven cycles if the condition fails or ten cycles if the jump actually
occurs, In this case, since C has been loaded with 50 hex (80 decimal),
many decrements and jumps occur, totaling a time interval expressed
as:

80 * (4+10 cycles)/(2.4576 MHz)

This evaluates to about 0.456 milliseconds. (In this expression “cycles”
refers to CPU clock cycles.)

For the sound wave emitted by the beeper to complete one cycle
(one period), two togglings must occur. The audio frequency is the
inverse of the period, or about:

(1 cycie)/(2 * 0.456 miltiseconds)=1100 cycles per second.

In this expression, “cycles” refers to the audio signal produced by
the beeper.

The duration of the beep is determined by the outer loop. The B
register is loaded with zero and decremented once for each toggle until
it once again equals zero. This means it is decremented 256 times. The
duration is:

(256 toggles)™(0.456 Msec/toggle)=0.117 sec.

170 inside the TRS-80 Model 100

The actual BEEP frequency is somewhat lower than the calcu-
lated value. The duration is longer, because the length of the toggling
period is longer than the 0.456 seconds calculated above. The subrou-
tine at 7657 is, after all, being called by a higher routine with instruc-
tions of its own. It takes time even to accomplish the toggling.

For this application, approximate values work fine. Chapter 12
describes some activites, such as reading and writing a high-density
magnetic tape, that require a careful counting of every machine cycle,

Toggling the beeper transistor is also used to monitor the cassette
loading process and the Telcom carrier-detection process. Consider,
for example, the code at 700D through 7011, deep in the heart of the
cassette input routine:

LDA FF44 LD A,(FF44)
ANA A AND A
cz 7676 :CALL 2,7676

This code is reached whenever the cassette input circuitry detectsa
properly timed plus-to-minus or minus-to-plus transition in the incom-
ing cassette audio data. It first inspects the contents of FF44, the
location of the SOUND ON/OFF flag. Assuming SOUND is ON, the
toggling routine is called.

From this you cansee how SOUND ON and SOUND OFF can be
accomplished in assembly language. SOUND ON is the same as load-
ing zero to FF44, and SOUND OFF is the same as loading a nonzero
value,

The audio waveform given off by the beeper is a fair copy of the
waveform provided to the computer by the cassette.

A similar routine is used in TELCOM at 6EEA. The beeper is
toggled in response to changes in the carrier detect bit (bit 0), of input
port D8. The carrier detection filter, discussed in detail in the previous
chapter, does allow noises other than a bona fide carrier tone to pass
through. These noises show up in the carrier detect bit, and allow you
to hear such things as a ringing phone number when you place a call to
a distant modem.

Piezoelectric Beeper 171

It is possible to use the beeper to synthesize, albeit crudely, the
human voice. Try writing a program that repeatedly samples a
recorded voice played to the cassette input signal, storing in RAM the
71”7 or "0” that is found each time. The "1”’s and "0”’s are loaded to the
beeper at intervals equal to the sampling intervals.

The playback interval can be varied to change the pitch of the
reconstructed voice.

A fundamental rule of digital synthesis is that the number of
samples per second must be more than double the desired bandwidth
to be reproduced. Since the Mode! 100 cannot reproduce the wave-
form, but only the zero crossings, intelligible synthesis requires a far
faster sampling rate. Synthesis of a one-second phrase might require
five or eight thousand samplings.

Eight thousand samples, of course, need not fill up eight thousand
bytes. Since each sample is a single binary digit, rotate instructions can
be used to pack them into just 1K,

PI1O Timer Use

The PIO chip, as discussed in chapter 7, contains a divider (some-
times called a timer), which is used during UART input and output to
generate the transmit and receive baud rates. The CPU crystal fre-
quency of 4.9152 megahertz is halved by the CPU and provided for the
TI (timer input) pin of the P1O. There, depending on divisor and mode
data loaded on the P10, a lower frequency can be produced at the TO
(timer output).

When the UART is not in use, the divider can be connected to the
beeper and loaded with a divisor to produce a desired audio frequency.

To do this in assembly language, select a divisor based on the
desired frequency:

divisor={2.4576 MHz)/(desired frequency).

For example, to produce a concert A (=440 hertz), the divisor
should be about 5585. The low-order part (5585 AND 255, which is
209) belongs in output port BC, the least-significant byte of the P10
divisor. The high-order part (5585-209)/256, which is 21, belongs in
output port BD, the most significant byte of the PIO divisor.

172 inside the TRS-80 Model 100

In addition, the timer mode must be set as a “square wave”, which
requires that the the word sent to port BD has bit 6 on and bit 7 off. The
value sent to BD is 21+64, or 85.

Next, a command word is sent to the PIO telling it to start the
divider running. As described in chapter 5, this is accomplished by
sending a C3 hex to output port B8. See table 9.1, listing the beeper
output ports.

Finally, the beeper must be connected to the divider. Qutput port
B of the P10 (CPU output port BA) needs to have bit of 2 off and bit 5
on. This can be done by reading the value of input port BA, ANDing it
with FB hex (which turns off bit 2), ORing it with 20 hex (which turns
on bit 5), and sending that value to output port BA. After doing all this,
the beeper should sound,

A ROM subroutine, MUSIC, is available to make the beeper
sound, and it is the same routine as that used by the BASIC SOUND
command. The pitch is determined by the divisor in the double register
DE, and the duration is determined by the byte in B; it is invoked by a
CALL to 72C5. Disassemble the code at 72C5 through 7303, and use
the following comments to understand it:

72C8-72C7 Send low-order byte of divisor

72C9-72CC Send high-order byte with mode bit

72CE-72D0 Turn on divider

72D2-72D8 Connect beeper to divider

T2DA-7T2F6 Let the tone continue, but respond to BREAK key
72F9-72FF Bisconnect oeeper, resume previous beeper activity

Musical Tones

As mentioned in the Model 100 user’s manual, the BASIC
SOUND command can be used to make musical tones, (Of course,
from assembly language, the same routine is used by CALLing 72C5.)
Unfortunately, the divisor values given there are incorrect. Figure 9.5 is
a BASIC program that calculates the correct values.

The method used is simple. A concert A pitch is assumed to be 440
Hertz, although other frequencies have been used. The program could
casily be modified to some other “A” frequency. For a note of any given

Piezoelectric Beeper 173

frequency, the note one octave above it is defined simply as the note
whose frequency is double the given frequency.

The definition of the octave, by itself, does not suffice to deter-
mine the frequencies of the notes constituting the scale in between. For
the last century, though, Western musicians have used a so-called
equal-tempered scale. Each pair of notes, going up the scale, has the
same ratio of frequencies. From this, it follows that the ratio must be
the twelfth root of two, so that a change of twelve steps doubles the
frequency.

Knowing this, it is easy to write a program in BASIC which
calculates the frequencies and appropriate divisors.

_ J

~

5 DIM N$(11):FOR I1=0 TO 11:READ N${I):NEXT

6 DATA"A","A#" "B","C","C#"," D" "D#" "E","F" "F&#" "G" "G#t"
10 FOR I1=-18 TO 26

20 F=440*(2A(1/12)) A

30 D=(2.4576*10\ 6}/F

40 PRINT USING™ ##### #### NS ((1+12*100)MOD12) F.D
45 SOUND D,50

50 NEXT

Figure 9.5. Calculation of divisors for notes of even-tempered scale,

The resulting tones are shown in table 9.2.

174 Inside the TRS-80 Model 100

Table 9.2. Divisors for even-tempered tones

Note Frequency Divisor

D# 156 15798

E 165 14911

F 175 14074

F# 185 13285

G 196 12539

G# 208 11835

A 220 11171

A# 233 10544

B 247 9952 1 o

C 262 9394

C# 277 8866

D 204 8369 i

By | 2| 5088 The Printer Interface

E 330 7456

F 349 7037

F# 370 6642

G 392 6269

G# 415 5918

A 440 5585

A# 466 5272

B 494 4976

C 523 4697

C# 554 4433

D 587 4184 The Model 100 communicates with a printer according to the
D# 622 3950 - Centronics interface standard, which defines mechanical, electrical,
E 059 | 3728 : d soft haracteristics of the interf

. 698 3519 and software characteristics of the interface.

Fit 740 | 3321 3 . .

G 784 | 3135 Mechanical Requirements

G# | 831 | 2959 . _ .

A 880 2793 _ The first requirement of the Centronics standard is the connector,
Aw 932 | 2636 . a 36-pin device usually made by AMP or Amphenol. At the rear of the
g ?g?w ggig : Model 100 is a 26-pin connector labeled “PRINTER ™, with the hard-
G 1108 | 2217 : ware designation CN35. This connector, with square pins spaced 1/10
D 1175 | 2092 :: inch apart, was probably chosen to save precious space on the Model
g# :g:g :ggi : 100 case. The printer cable 26-1409, the connections of which are
F 1397 | 1759 : shown in table 10.1, plugs into CN5 and has a connector at the other
F# 1480 | 1661 end that conforms to the Centronics standard.

G 1568 1567

G# 1661 1479

A 1760 1396

A# 1865 1318

B 1976 1244 175

