Hidden Powers of the
Keyboard

7?16 keyboard is the main input device for the Model 100. "I‘he hard-
ware for the keyboard is quite simple, consisting of an array of switches that
correspond to the keys of the keyboard. However, the software that manages
the keyboard is quite complex.

In this chapter we’ll explore the secrets of the Model 100’s keyboard. We
will see in general how such a keyboard works; then we will study Lhc specific
details of the Model 100's keyboard. We will describe the section of the
background task in the Model 100’s ROM that runs the keyboard, :allowing
the computer to continually capture keystrokes as it goes a.bout: its other
business. We will sce how the characters are stored in a bufler as they are
typed, and we’'ll see how other routines pick them up as needed. We will
also describe the ON KEY BASIC interrupt routines that allow you to
program the Model 100 in an interactive, user-friendly manner.

How a Scanning Keyboard Works

The Model 100 uses a “scanning keyboard” run by the CPU. This kind
of kevboard requires that the CPU constantly send pulses into the keyboard

through certain signal lines while “sampling” certain other lines coming out
of the keyboard. "This "pulsing and sampling” must happen quite frequently
because the keyboard hardware cannot “remember” what key or keys you
hit once you have released them. On the Model 100 the entire keyboard is
scanned every 12 milliseconds. That's about 84 times a second.

From the scanning information the CPU can tell exactly what key or key
combinations are being depressed. We will see later how the computer can
develop a complete “image” of the keyboard in its memory as it scans the
keyboard.

Logically, the keys are arranged in the form of a two-dimensional matrix
(see Figure 6-1). Each key operates a switch that connects one input line to
one output line. The input lines run through the keyboard forming the
columns of this matrix, and the output lines form the rows of the matrix.
Each key lies at an intersection and thus is uniquely identified by a choice of
one input line and one output line. You should be aware that the logical
wiring of this matrix does not conform exactly to the physical arrangement
of the keys.

Let’s look at how the sampling process works. We'll start with the job ol
determining if a single specified key is depressed, and then we will sce how
to scan for any key. "To look for a particular key, the first step is to turn “on”
the input line for its column, turn “off” the input lines for all the other
columns, and then examine the output lines, Under this condition, the
output lines tell you the state of the keys of just this one column. If a
particular output line is “on”, then its key is being depressed; otherwise, it’s
not.

1o find out if any key at all has been depressed, you must check all the
columns, one at a time, using the above method. The resulting sets of “on/
off” patterns of the columns can be arranged side by side to give a “picture”
of the keyboard showing exactly which keys were depressed.

How to Program the Model 100 Keyboard

In this section we will develop a BASIC program to display the keyboard
matrix on the liquid crystal display.

"The Model 100 uses a nine column by eight row matrix for its keyboard
(see Figure 6-1). Of the seventy-two possible positions in this matrix, sev-
enty-one correspond 1o keys on the keyboard, leaving one position that does
not correspond to any key.

The nine input lines are connected to eight bits of port B9h = 185d and
one bit of port BAh = 186d (bit 0). A bit value of 1 turns off an input line
and a bit value of 0 turns it on, This is just the opposite of what you might

Hidden Powers of the Keyboard

149

Sopeth, DAL EIEdesigners ol the Model 100 placed "mverters” in the key-

board electronics that perform this reverse in logic.

The input ports are also used by the LCD and the clock. However, there
is no conflict under normal operations because the keyboard output lines
menamrmmdwhmlpwmlﬁm:485dandBAh:ES&ibedngumdﬁn
other purposes.

'Thetﬁght@utputhnesareconnedfdIx)portE8h==232dfbrinputto
the CPU. This input port is not shared by any other part of the system, so
there is never any confusion here.

For the output lines, a bit value of 1 means the corresponding switch
was open (key not depressed), and a bit value of 0 means the switch was
closed (key was depressed). Again, the logic is reversed relative to what you
nﬁghtexped;butﬁisconﬁmfntwhhEheiogmfbrtheinput

SNE- 3

o

@ | benf o2

—_— f\)-@

The Model 100 keyboard matrix

Figure 6-1.

130 Hidden Powers of the TRS-80 Model 100

jag
1ié
128
134
14da
156
164
178
igg
184¢
209
=14
288
24

23

0@
L7
=L
29¢
B
214
320
33¢
24
Jod
aG@
7@
S8d
4@
449
418
42
43¢
444
450
age
478
484
4548

the Model 100. When you run this program, you will see a small rectangular
display of pixels in the middle of your screen. If you now press various
combinations of keys, you will see the corresponding pixels change from

dark to light. To stop the program, just hold down { CTRL) C or for

d momernt.

CDISPLAY KEYBOARD MATRIY
CLES
PRINT TAB(L1G) 5"KEYBOARD MATRIY®

MAIN LOOP

©OTURN OFF BACKGROUND TAsk
CALL Josen

SET BIT 2 OF PORT Baoh
K= INPOLIBE)
DUT 188X OR 1

SCAN THROUGH & COLUMNG
OUT 185 .234:A40=INP(232)
DUT 185 .253:81=INP(7a2)
QUT 188,251 :42=INP(23%)
OUT 1BE 247 :A3=INP(233)
GUT 183 :238:04=INP(235)
QUT 188,203:a5=INP(232)
OUT 185,191 :AB=INP(233)
OUT 185:127:A7=INP(232}

CHELCK NINTH RO

R

TURN OFF LOWER COLUMNG
DUt 185,755

©OTURM ON JUST THE NINTH
AEINP(18E)
CGUT 1dB:¥ aND Zuz
AB=INFP{(Z38;

© DISPLAY THE MATRIN ON THE LCD

JUST ONE LCD DRIVER
GUT 185,128

" BET UP LCD POSITION

Hidden Powers of the Keyboard

1517

2 out Zod.g

5ié

ZLe SEND THE BYTES TO LCD
338 aUT 25848

S48 OuT 255 .87

So8 DUT 288 .4

B0 QUT 2E53.A3

378 Ut #E

S8 LuT

>4 our

Hag IR

Blg auT

BZg 7

B3@ ° ALLOM FOR A BREAEK
Eda FRINT CHR#(11)3
BEg 7

&g © GO BACK FOR MORE
578 LOTO 1854

Let’s look at the code in detail. Except for some initialization consisting
of clearing the screen (line 120) and printing the title “KEYBOARD MA-
TRIX” (line 130), the program consists of a loop (lines 150-670) that
continually reads the columns of keyboard matrix and sends them to the
LCD.

At the beginning of the loop (lines 170-180) the background task is
turned oft by calling the machine-language routine at 765Ch = 30,300d
(see Chapter 4 for description).

In the next part of the loop, the columns are turned on one by one, and
the keyboard output port (port E8h =232d) is read each time into one of
the variables A0 through A7. The bytes are not sent directly to the display
because the liquid crystal display also uses ports BO9h = 185d and BAh = 186d.

Notice how the ninth column is handled. This column is not controlled
by port B9h = 185d as arc the other columns. Instead., it is controlled by bit
0 of port BAh = 186d. Before the other columns are handled, this bit is set
to 1, turning off this column. This has to be done caretully because this bit
is on a port (port BAh = 186d) that is shared by other devices, including the
power for the machine. You can see how carefully we set this bit by looking
at lines 210-220. On line 210 the port is read, and then on line 220 1ts
contents are ORed with 1 as they are put back. It should be clear that this
changes only the one hit.

Next, the first eight columns are scanned (lines 250-320). In each case,
one bit of port Bh = 1854 is set to zero while the others are set to one, and
port E8h = 232d is read into the appropriate variable: A0 through A7,

152 Hidden Powers of the TR$-80 Model 100

After all the other columns have been scanned, it’s time to scan the last
column. Again, port BAh = 186d is read before it is written to. Notice that
both bits 0 and 1 of port BAh= 186d are made 0 when the port is set. This
has two eftects: it turns on the last column of the keyboard matrix (with bit
0), and it also disables the last two LCD drivers (controlled by bits 0 and 1).
These are used for subsequent display of the matrix. The byte from this
column is then picked up and stored in the variable A8.

By line 420 ail the raw data from the keyboard are stored in variables
A0 through A8, ready to be sent to an LCD driver for display on the screen,
But before this data is sent, all but one of the LCD drivers are disabled (line
470), and the starting byte address is sent to that driver through port
FEh=254d. The matrix is then displayed by sending this raw data directly
to a LCD driver through port FFh=255d (lines 530-610). (Sec Chapter 4
for detailed description of how to program the LCD.)

Before the bottom of the loop there is a command that homes the cursor,
Its purpose is to turn on the background task so that a C can be
sensed if the user wishes to terminate the program. Any time you use the
PRINT command, the background task is turned on.

Besides illustrating how the keyboard works, this program demonstrates
how the LCD can be programmed directly 1o display complex data in real
time.

Descriptions of ROM Routines

The ROM routines for the keyboard fall into three main classes: BASIC
interrupt, background scanning task, and keyboard input. With the infor-
mation presented here you should be able to write your own BASIC or
machine-language programs to detect and handle any kind of regular or
special combinations of keys. You can set the keyboard up for_ail sorts of
input configurations. As with the case of special programming for the LCD
screen, this 1s especially useful for games and educational software.

The ON KEY Interrupt Routines

Let’s start with the interrupt routines for the eight function keys. There
are four such commands: ON KEY GOSUB, KEY ON, KEY OFF, and KEY
STOP. These provide standard ways to have specially programmed keys,

The code for ON KEY GOSUB is located at ASBh=2651d (see box).
This code is also shared by the ON TIME$ GOSUB, ON COM GOSUB,
and ON MDM GOSUB commands. Here, a routine at 1AFCh=6908d is
called to determine which of these different device types is required. For

Hidden Powers of the Keyboard

153

the ON KLY interrupt, this routine returns with a value of 0208h in the
BC register pair, that is, a value of 2 in the B register and a value of 8 in the
C register. This indicates where and how much information for this type of
interrupt will be stored in the system’s interrupt table, which is located at
F944h =63,812d (see Figure 6-2).

Routine: ON...INTERRUPT/GOSUB — BASIC
Command

Purpose: o initialize BASIC interrupts
Entry Point: ASBh=2651d

Input: Upon entry, the HI. register pair points to the end ol an
ON...GOSUB command hne.

Output: When the routine returns, the location of the subroutine to
handle the particular interrupt is set.

BASIC Example:

Eall 2851 .8 +H

where H is the address of the end of an ON...GOSUB command
line.

Special Comments: None

For the ON KEY GOSUB command, the value 8 in the C register
indicates that a maximum of eight locations (one for each function key) will
be used, and the 2 in the B register indicates that they will start on the third
location of this table {the first two are occupied by the TIME$ and the MDM
or COM 1interrupts). (Note that the MDM and COM have exactly the same
mterrupt locations.) Each location in this table has three bytes, one for status
and two for the location of the interrupt subroutine. The last part of the
routine at A5Bh =2651d reads the list of BASIC subroutines from the end
of the ON KEY GOSUB command line and places their locations into the
proper slots of the interrupt table (see Figure 6-2).

The KEY ON, KEY OFE and KEY STOP use the same code and work
in the same way as the TIME$ ON, TIME$ OFF, and TIME$ STOP com-
mands described in Chapter 5. That is, they cause transitions of finite state
machines (see Chapter 5) whose states are stored as status bytes in the
interrupt table. Each function key has its own status byte and hence its own
finite state machine,

154 Hidden Powers of the TRS-80 Madel 100

'The following program lets you “peek” at these status bytes, graphically
demonstrating how these interrupt functions work. You can watch the state

of the interrupt as you turn it on, off, and stop it. The keys (F1), (F2),
have been assigned to do these tasks for the function key so that
you can have direct and convenient control over these functions for one
particular interrupt. As you press these keys you will see the fourth status
byte change. You should review the discussion of BASIC interru pts in Chap-
ter 5 to see what the various values mean.

tag / DISPLAY INTERRUPT ETATES

1ig ¢

12@ CLs

13@ PRINT "FUNDTIGM KEY STATESY
144 PRINT:FRINT::PRINT

1548 FRINT "F1i REY {4) ON"

1&548 FRINT "FZ KEY (d) DOFF"

174 FRINT "F3 RKEY{4) STOR"

1ge

19@ ° TURN ON INTERRUFRTS

20@ On KEY GOSUB 32@.35¢,380.41¢
2ie KEY (1) ONM:KEY(Z) ON:KEY (3} 0N
228

238 7 PRINT ON THIRD LINE

248 ALl 179Z@ 42

258

uoBEon

Figure 6-2. The system interrupt table

Hidden Powers of the Keyboord

155

TEa
Z7a
L0
= 10]
Ja0
28
E9ngs]
33w
34
356
356
374
Jga
a3H@
4oa
416
4z

CODIGRLAY THE BTATUE OF THE KEYS
FOR I = B3Q3IRY TO B3B4AL!Y GTEP 3
PRINT USING “suss" iPEERK(LY)
MEXT 1
COTO 23¢é

TOREY 1
KEY (4}
HETURN
©OREY 2 INTERRUPT RDOUTINE
KEY (4) OFF
RETURN
COKEY 3 INTERRUPT ROUTINE
REY {4y &T4p
RETURN
fOREY 4 INTERRUPT ROUTINE
HRETURN

INTERRUPT ROUTINE
0N

Let’s look at the code for this program. In lines 120-170 the background
display s set up, showing a title and a description of the function keys. In
lines 190-210 the locations of ON KEY interrupt routines are defined and
the interrupts for F1, ¥2, and F3 are turned on.

Lines 230-30() torm the main loop, which repeatedly displays the status
bytes. At the top of this loop, the cursor is placed at the beginning of the
third line by CALLing the cursor positioning routine at 427Ch = 17,020d
(sce Chapter 4). This routine expects the row position in the L register and
the column position in the H register. In each case, the numbering starts at
zero. The CALL command expects the value of the HL register in its third
parameter. In this case we pass a value of 2, causing zero to be in H and 2
to be in L., thus setting the cursor to row 2, column 0.

In the last part of this loop, a short FOR loop (lines 270-290) prints the
status bytes on the screen. They appear on the third line of the screen,
where we just placed the cursor.

Afier the main loop come our BASIC interrupt subroutines for F1
through F4. As we have already observed, the first three keys control the
interrupt for the tourth. The routine for F1 is a command to turn on the F4
interrupt, the routine for 2 is a command to turn off the F4 interrupt, and
the routine lor F3 is a command to stop the F4 interrupt.

The Clock-Cursor-Keyboard Background Task

The keyboard section of the background task performs an essential
function for the Model 100 by constantly scanning the keyboard. It detects

156 Hidden Powers of the TRS-80 Model 100

what keys are hit and puts their character codes into a keyboard character
bufter.

The code for the keyboard section of the background task starts at
7055h = 28,757d and Tuns to about 7241h = 29,249d. It is divided into four
main subsections: general management, key detection, key decoding, and
character buffer management (see box).

Routine: Keyboard Scanning

Purpose: 'lo scan the keyboard as part of the background task
Entry Point: 7055h =28,757d

Input: Monitors the keyboard

Qutput: Puts codes for the keys in the keyboard mput buller
BASIC Example: Not applicable

Special Comments: Not a callable routine — part of background
task

Management

The general management subsection controls program flow and timing
(see box). It sets up a “graceful” exit from the keyboard section, and it times
the keyboard scanning by allowing it to be performed only every third time
that the background task is executed.

Routine: Management of Keyboard Scanning

Purpose: To set up timing and exit conditions for the keyboard
scanning background task

Entry Point: 7055h = 28,7574

Input: A counter located at FF8Fh

Output: The counter is decremented 1f not already equal to one. If
it is one, the counter is set to a value of three.

BASIC Example: Not applicable

Special Comments: Not a callable routine — part of the background
task

Hidden Powers of the Keyboard

157

The “graceful” exit from this section is accomplished by pushing the
address 71F4h =29,172d onto the stack. This address points to the very last
part of the background task; hence any RETurn instruction in this section
will automatically cause the CPU to jump there. The code at this “finishing”
address of 71F4h =29,172d has the correct series of “POPs” and RETurn
to make a proper exit from the background task.

The waltz-like “every third time” timing is controlled by a countdown
counter located at FF8Fh =65,423d. This counter is loaded with 3 every
time it reaches zero, Since keyboard scanning is performed only every third
time that the background task is executed, this occurs about every 12 milii-
seconds (recall that the background task itself is performed about every 4
milliseconds.)

Key Detection

The key detection subsection must determine and record the matrix
positions of keys that are pressed down on the keyboard. You can use the
ideas described here to develop your own detection routines. For example,
you could write a program that detects certain double and triple key com-
binations used with programs that simulate various instruments or machines.

The routine for key detection begins at 7060h = 28,768d (see box). It
contains a short block of code starting at 7066h =28,774d, which decodes

The job of key detection is complicated by the fact that the various shift
keys ((SHIFT), (CTRL), (GRPH), (CODE), (NUM J, and ((CAPS LOCK) are used
to modify the meaning of regular keys. For this reason and others, detecting
the shift keys differs from detecting other keys.

The shift keys are all in the last (ninth) column of the keyboard matrix,
which is controlled by bit 0 of port BAh= 186d. With the exception of the
key, which is also on this column, all keys are controlled by
the eight bits of port BSh=185d. The ninth column is scanned first, in a
separate section from the other columns.

The first few instructions of the keyboard detection routine set up point-
ers to two buffers, each nine bytes long. In each buffer there is one byte for
each column of the keyboard matrix. The frst buffer runs from
FF91h=65,425d to FF99h =65,433d, and the second runs from
FFOAh=65,434d to FFA2h=65,442d (sce Figure 6-3). The ending ad-
dress of the first buffer is placed in HL, and the ending address of the
second is placed in DE. They are placed this way because the columns of
the keyboard matrix are scanned backward from last to first. This order is
convenient because it allows the shift keys to be scanned first and it makes
the loop counter (B register) equal to the number of the column.

Here is a short program that displays these butfers on the LCD screen.
As you type characters, you will see the contents of the bulters change.

the ninth column of the keyboard matrix, and then a loop (starting at Lod i REYBOARD MATRIX BUFFER DISPLAY
7080h = 28,800d) for detecting all the other keys. The loop is executed }X‘ig) \
icht times, once for each remaining column of the keyboard matrix. The tzg PRINT LHR®(110}
clg ’ . 5 © <Y atrx. 130 FOR 1 = BS4AZ5 TO 65433
columns are scanned in reverse order, from last to first. 140 PRINT PEEK (I3
128 MEXT I
168 PRINT
S : 174 FOR I = 83434 7O B3442
Routine: Key Detection | aa PRINT PEEK(1)3
Purpose: To determine which keys have been hit 189 MEXT I
So6 GOTO 128

Entry Point: 7060h =28,768d
Input: Monitors the keyboard

Output: Special tables in RAM contain information about the key-
board matrix.

BASIC Example: Not applicable

Special Comments: Not a callable routine — part of the background
task

This program consists of an infinite loop that displays the keyboard
matrix buffers over and over again. At the top of the loop (line 120), the
cursor is placed in home position. Lines 130-160 display the first bufler on
the top line of the display, and lines 170-190 display the second bulfer on
the second line of the display.

Tiwo buffers are needed for the keyboard matrix in order to help distin-

guish among the following conditions: 1) a key has not been held down long .

enough 1o register; 2) a key has been just hit, but this is the first keyboard
scan that detects it; 3) a key is depressed but has already been detected

; Keyboard 159
158 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the Keyboar

during a previous scan; and 4) a key has been depressed long enough to
activate the repeat feature.

In general, a key is detected in a two-step process, one step for each
buffer. In the first step, the byte for the key column is picked up from the
keyboard output port and compared with the current value in the first
buffer, and then the current value in the first buffer is replaced by this new
value. If the new and old values for the first buffer disagree, this must be
the first scan to detect this change in the keyboard. In this case, no further
action is taken for this particular column.

If the new and old values for the first buffer agree, the second step is
performed. In this step the corresponding byte in the second buffer is
checked and updated if it is different. This time no further action is taken
if the values agree, because this means that the key has already been de-
tected and should not be counted another time. However, if the values differ,
the position of the key in the matrix is computed, ready for the decoding
stage.

The key detection process produces several bytes of data that are used
by the decoding process. Primary among these are FFA3h = 65,443d, which

Figure 6-3. Keyboard matrix buffers

160 Hidden Powers of the TRS-80 Model 100

contains the shift code byte (for column nine), and FFAGh = 65,446d, which
contains the position of the key in the matrix. This last value is obtained by
multiplying the column position by eight and adding in the row position.
The code for this calculation starts at 70F0h =28,912d.

The repeat feature for keys is handled in the code starting at about
70B0h = 28,848d. The length of the keyboard buffer is first checked, for if
there is more than one character in the buffer, the repeat feature will not be
active. A counter at FFA4h=65,444d counts down 84 cycles of keyboard
scanning before the repeat feature is activated. Using the 12-millisecond
cycle time, this gives about a one second delay before the key begins to
repeat automatically. Once the key begins to repeat, for each cycle of the
repeat, the counter is set back to six (at 70BBh=28,859d), giving a fre-
quency of about fourteen repeats per second. (This checks with the timing
results we measured with a stopwatch.) '

Key Decoding

In the decoding section the key positions are converted into ASCII
codes. You can use the basic principles of this routine to convert key corbi-
nations to any sort of code that is required. The main job is in setting up
the proper translation tables.

"The decoding subsection begins at about 7122h = 28,962d (see box).

Routine: Key Decoding

Purpose: 1o convert key combinations into corresponding ASCII
codes

Entry Point: 7122h = 28,962d

Input: Upon entry, the key position number is in location
FFAbh =65446d and the shift code (what shift keys have been de-
pressed) is in location FFA3h =65,443d.

Output: ASCII code for the corresponding character
BASIC Example: Not applicable

Special Comments: Not a callable routine — part of the background
task

First the position of the key is retrieved from FFA6h = 65,446d. Figure
6-4 shows how the position numbers correspond to the labels on the keys.

Hidden Powers of the Keyboard

161

The keys in the white area of this diagram are handled first. They have
position numbers O through 43 and correspond to all the alphabetical,
numerical, and punctuation keys. Not included are the keys around the
outside of the keyboard, such as (E5C), (7AB), (CIRL), (SHIFT), (SPACE),
(ENTER), and the function keys.

The keys with positions (¢ through 43 map to ASCII in six different
ways, depending upon the shift code. There are six tables in memory to
handle these six different cases (see Appendix D). Each table is forty-four
bytes long.

"The code that manages these tables extends from 7122h =28,9624 to
71B8h=29,112d. In this code, the BC, HL, and DFE are used to help
compute the table look-up address. The BC register pair holds the key
position, the HL register pair holds the base address for the particular table,
and the DE register pair holds the value 44 or 0 for use with the
key. These are all added together to compute the look-up address for the
ASCIH code.

Figure 6-4. Keyboard matrix table

162 Hidden Powers of the TRS-80 Model 100

The first table starts at 7BFIh =31,729d and contains the ASCII codes

for the unshifted characters. This includes the lowercase letters, the num-
bers, and the unshifted punctuation mark keys. In this case HL is set equal
to the value 7BF1h=31,729d, and DE is made equal to zero for the look-
up.
P The second table starts at 7C1Dh =31,77%d and holds the ASCII codes
for uppercase letters and shifted punctuation marks. In this case HL is
loaded with 7BFIh=31,729d as before, but DE has the value 2Ch = 44d.
Thus the computed address will point into this second table. The CPU
instructions at 7133h=28,979d, 7136h =28,982d, 7185h=29,061d, and
7188h =29,064d examine the key bit and set DE accordingly.

The third table starts at 7C49h=31,817d and holds ASCII codes gen-
erated while holding down the key, and the fourth table starts at
7C75h=31,861d and holds ASCII codes for characters generated while
holding down both the and the keys. In both cases the HI,
register is loaded with the value 7C49h=351,817d, but as above the DE
register 1s used to “shift” between the two cases.

The fifth table starts at 7CATh=231,905d and holds ASCII codes gen-
erated while holding down the key, and the sixth table starts at
7CCDh=31,949d and holds ASCII codes for characters generated while
holding down both the and the keys. Again, the HL register
is loaded with a base value (this time 7CA1h = 31,905d), and the DE register
1s used to “shift” between the two cases.

There are other parts to the decoding routine to handle the key
(at 720Ah = 29,194d), the (CAPS LOCK key (at 722Ch = 29,228d), the
key (at 7233h=29,235d), the function keys {at 715Bh=29,019d), and the
arrow keys (at 7222h=29,218d). There are special tables in the ROM to
handle some of these. If the (NUM) key is depressed, the table at
7CF9h=31,993d (see Appendix P} is used to search for the values of the
keys in the Model 100 keyboard’s number pad area.

‘Two tables contain ASCII codes for the keys in positions 44 through 63
(see Appendix Q). The first table starts at 7D07h = 32,007d and contains
ASCH codes for these keys when is not depressed. The second table
starts at 7D1Bh=32,027d and contains ASCII codes for these keys when

SHIFT) is depressed. The routine for decoding these keys runs from
7148h=29,000d to 7158h=29,016d and from 7222h=29,218d to
7229h=29,225d.

Hidden Powers of the Keyboard

163

Character Buffer Management

This section illustrates one way to build a buffer to receive characters
[rom an /O process. In Chapter 7, on serial communications devices, we
will see another way.

In the buffer management subsection, starting at 71C4h = 29,124d, the
ASCII codes for the keys are put into the keyboard input buffer (see box).

Routine: Keyboard Character Buffer Management
Purpose: 'Io put key codes into the keyboard input buffer

Entry Points: 71C4h=29124d, 71D5h =29 141d, and
71E4h =29 156d

Input: Upon entry, the ASCII code for the character is in the A
register and/or C register (depending upon which entry point is
used).

Output: The key codes are put in the keyboard input butfer.
BASIC Example: Not applicable

Special Comments: Not a callable routine — part of the background
task

There are several entry points. The one at 71D5h =299, 141d is for
placing characters in an empty buffer, and the one at 7154h = 20,156d is
for storing subsequent characters in the buffer.

The number of characters currently in the buffer is stored at location
FFAAh=65,450d. The buffer can store a maximum of thirty-two charac-
ters, and each character takes two bytes of storage. "The buffer is a queue:
That is, it is a list in which new entries are added to the end of the list and
old ones are taken from the beginning,

For regular ASCII characters, the first byte contains the ASCI code
and the second byte is zero. Certain other keys, namely the function keys
and the (LABEL), (PRINT), (PRINT) with (SHIFT), and ((PASTE), are stored
with & numeric code in the first byte and a value of 255 in the second byte.
"The numeric codes for these keys are () through 11, respectively,

Here is a BASIC program that displays the keyboard input buffer. You
can use it to warch this buffer as you hit various keys. Just run the program
and watch the screen as you hit some keys. You should type slowly, because
it takes a while for this BASIC program to make a full cycle. The first

164 Hidden Powers of the TRS-80 Model 100

number displayed is the number of characters currently in the buffer. After
that every two bytes is where a character is stored in the buffer. You should
compare the display on the screen with the foregoing description of the
buffer.

199 7 KEYBUARD BUFFER

O

124 PRINT CHRES$(11)3

139 FOR 1T = B3498 TO G534

ide PRINT USING "ssas"i PEEK{I):
154 NEXT T

168 GOTO 158

On line 120 of this program, the cursor is put into the home position
(upper left corner). On lines 130-150, the contents of the buffer are dis-
played. On line 160, the program loops back to line 120 to display the
buffer again.

The Keyboard Input Routines

The keyboard input routines provide a way to grab characters from the
keyboard character buffer. This is the “official” way to get characters from
the keyboard. It is the only way that the rest of the Model 100s ROM
routines can get characters from the keyboard.

The KYREAD Routine

There are several routines for getting characters from the bufler. For a
few more than are presented here, see the Model 100 ROM Functions (700-
2245) from Radio Shack.

Let’s look first at a routine called KYREAD (see box), located at
7242h = 29,250d. 1t checks whether or not there is a character in the buffer.
If there are no characters, it returns with the Z flag set (Z). If there is a
character, it returns with the ASCII code for the key in the A register and
the Z flag clear (NZ). However, if the C flag was also set, then the character

corresponds to one of the special keys through ((F8), (TABEL), { PRINT),
SHIFT J(PRINT), and (_PASTE). In that case the A register contains a corre-

sponding numeric code, 0 through 11,

Hidden Powers of the Keyboard

165

Routine: KYREAD

Purpose: 'lo read a key from the keyboard input buffer

Entry Point: 7242h =29,250d

Input: From the keyboard

Output: When the routine returns, the 7 flag indicates if there are
any characters in the keyboard input buffer. If the 7 flag is set (Z),
there are no characters. If the Z flag is clear (NZ), the ASCII code

of the next character is in the A register. If the C register is also set
(C), then the character corresponds to one of the special keys

through ((F8), (LABEL), (PRINT), ((SHIFT)(PRINT), and ((PASTE). In

that case the A register contains a corresponding numeric code, 0
through 11.

BASIC Example: Not applicable

Special Comments: None

The routine first turns off the background task and then checks the
variable at FFAAh = 65,450d, which holds the number of characters in the
buffer. If this is zero, then it returns, turning the background task back on.

If there is at least one character in the bufter, then its code is loaded into
a register, and the other entries in the buffer are moved one character
position toward the front of the buffer. Then the routine returns, turning
on the background task.

The BRKCHEK Routine

The next routine is called BRKCHK (see box). It checks for a break or

pause character ((CTRL) C or (CTRL) S). These are also generated by the

((BREAK) PAUSE) keys. If a break character was hit, it returns with the zero
flag clear (NZ) and the ASCII code for the break or pause character in the
A register; otherwise it returns with the zero flag set ().

166 Hidden Powers of the TRS-80 Model 100

Routine: BRKCHK

Purpose: 'lo check for break or pause character
Entry Point: 7283h =29,315d

Input: From the keyboard

Output: 1f a break character was hit, it returns with the zero flag
clear (N7} and the ASCII code for the break or pause character in
the A register; otherwise it returns with the zero Aag set (2).
BASIC Example: Not applicable

Special Comments: None

The BRKCHK routine is located at 7283h=29,315d. It fArst checks
location FFEBh = 65,515d. This location is set by the key detection routines.
[t 1s normally zero, but if a break or pause character is detected, the ASCII
code for that character is stored in this location. Special codes with the
eighth bit turned on are also stored here when a Function key is detected.

The BRKCHK routine clears location FFEBh = 65,515d after checkin g
it. It first checks the eighth bit to see if a function key has been detected. If
this is nonzero, a function key must have been detected, and it processes an
interrupt for that key. If the eighth bit is clear (zero), then the routine
returns with the zero Hag set according to the contents of location
FFEBh =65,015d (nonzero or zero according to whether or not a break or
pause was detected).

The KEYX Routine

The last input routine we'll look at in this chapter is called KEYX (see
box). It checks the keyboard queue for normal characters or a break. It does
not actually return any characters, only CPU flags. If there is at least one
character in the buffer, it returns with the 7 flag clear (NZ); otherwise the
zero Hag is set (Z). If a break was hit, then the carry is set (C); otherwise it
is clear (NC).

Hidden Powers of the Keyboard

167

Routine: KEYX

Puarpose: To check for a character from the keyboard
Entry Point: 7270h = 29,296d

Input: From the keyboard

Hidden Powers of the
Communications Devices

Output: If there is at least one character in the buffer, the routine
returns with the Z flag clear (NZ); otherwise the zero flag is set (Z).
It a break was hit, then the carry is set (C); otherwise it is clear (NC).

BASIC Example: Not applicable

Special Comments: None

The routine is located at 7270h =29,296d. It first calls the BRKCHK
routine (described previously). If there is no break or pause character, it
checks location FFAAh =65,450d to see if there are any characters in the
buffer, returning with the zero Hlag set accordingly. If there was a break or
pause, it checks the ASCII code in FFEBh = 65,515d tor a break (ASCII 33,
as opposed to a pause (ASCIL 13h = 19d). If indeed there was a break, the
routine sets the carry and returns; otherwise it checks to see if the buffer
has “pause” characters pending,

Summary

In this chapter we have explored the Model 100°s keyboard. We have
seen how to scan it using BASIC and how the ROM routines in the Model
100 interface between the keyboard and the rest of the computer. We have
scen that the actual hardware keyboard is fairly simple, but the solftware is

complicated by the fact that the (SHIFT), (CTRL), (BREAK) and keys

have to be handled in special ways.

ﬂe serial communications line provides a vital link between the Model
100 and other computers, allowing it to become part of a larger information
handling system. Through the serial communications line, the Model 100
can be used as a terininal for other computers and as a detachable unit that
can be used to carry files from a larger computer to places where larger
computers are unavailable. For example, you can download a file into the
Model 100 at work, edit it at home, and then bring it back to the main
computer the next day. Through the modem connection, you can also con-
nect Lo other computers over telephone lines.

In this chapter we will explore the secrets of the Model 100’ modem
and RS-232 serial communications devices. We will see how these devices
work and how they are set up in the Model 100. Then we will study the
ROM routines that control them.

168 Hidden Powers of the TRS-80 Model 100 169

How an RS-232 Serial Communications Line Works

‘There are two major ways to send computer data: parallel and serial.
Parallel transmission is normally used within the computer and for short
distances outside the computer such as between the computer and a printer,
Serial transmission is the rule for longer distances such as over the phone
lines or from one building to another.

With parallel transmission, all the bits of a byte of data are transmitted
at the same time, each over its own separate signal line. With serial trans-
mission, in contrast, the bits are sent one at a time over a single signal line
(see Figure 7-1).

Figure 7-1. Parallel and serial transmission

170 Hidden Powers of the TRS-80 Mode! 100

Advantages of Serial Transmission

The main advantages of serial transmission are that fewer wires are
needed and standards for this type of transmission are well established. The
main disadvantages are that special hardware is needed to convert between
the computer’s internal parallel format and the external serial format and
that serial transmission is limited to slower speeds than parallel transmission.

Let’s look in more detail at the advantages, starting with the fact that
fewer wires are needed for serial transmission. For a two-way serial com-
munications fine, a minimum of three signal lines (wires) is needed: one for
cach of the two directions and one as a ground line. Other signals can be
added to provide hardware control of the flow of information. The serial
communications port on the Model 100 contains six different signal lines
plus a ground, but it’s quite possible to use only three of these for many
applications (see Figure 7-2).

'The second advantage of serial transmission is its well-established stan-
dards. Standards increase the transportability of data and program files
and thus increase overall productivity. The main standard for serial com-
munications is called RS-232C; this is what the Model 100 uses. The RS-
232C standard encompasses a number of different speeds (called baud
rates) and a number of different formats (see Figure 7-3). When you set up
your communications on the Model 100 you have to select the baud rate,
word length, parity, and number of stop bits. Once these have been properly
selected, you should be able to communicate with any other computer that
has a RS-232C serial line with the same choices of speed and format. Since
most computer systems have the option of communicating in this way, your
Model 100 computer can communicate to most other systems.

Figure 7-2. Signals for serial transmission

Hidden Powers of the Communications Devices

17

Disadvantages of Serial Transmission

Now let’s look at the disadvantages of serial communications. The first
is the extra hardware required. Fortunately, this hardware has been neatly
packaged in computer chips called UARTSs. This stands for Universal Asyn-
chronous Receiver Transmitter. The word “Asynchronous” refers to the fact
that bytes of data can be sent one by one as they become available, instead
of in large blocks as with “synchronous” transmissions. There are a number
of ditferent UARTS available today. The Model 100 uses a UART chip
called an IM6402.

The second disadvantage of serial transmission is speed. The difficulty
is that the bits are sent one at a time. When a byte 1s to be sent, it is loaded
into the UART in parallel. Then the UART peels off the bits, one by one,
to be sent over the data signal line (see Figure 7-4). Sending one byte of
information requires that a series of about ten bits be sent over the serial
communications line. The extra bits are used to separate the bytes from
cach other. The opposite process happens when data are received. In this

Figure 7-3. Typical speeds and formats for serial tfransmission

172 Hidden Powers of the TRS-80 Model 100

case, the bits from the serial communications line accumulate in the UART
until a byte is complete and then are transterred in parallel into the com-
puter (see Figure 7-4). Special status lines from the UART to the computer
indicate when each of these processes is complete and the UART is able to
handle more characters.

Standard speeds for serial transmission range from 75 to 19,200 baud
(bits per second) or 7.5 to 1920 bytes per second. Data bytes are transmitted
nside the computer in parallel at speeds of up to several million bytes per
second, but transmission between computers at such high speeds simply is
not practical. The Model 100 can handle the full range of baud rates, but
not without problems. For example, the LCD screen can display characters
at a rate of only about 90 characters per second, and the practical limit for
downloading files (reading them into the Model 100's memory) is about 240
characters per second.

1o overcome difterences in transmission speeds between devices, serial
transmission lines send signals back and forth to control the fow of data.
The Model 100 uses what is called an XON/XOFF protocol. With this
method, the receiving device sends a S (XOFF) when it can no longer
safely handle more data from the transmitting device. It sends a Q

Figure 7-4. Converting from parallel to serial and from serial to parallel

Hidden Powers of the Communications Devices

173

(XON) when it can handle more. Later in the chapter we will study the
ROM routines in the Model 100 that handle this protocol.

The RS-232C Connector and the Modem

The UART in the Model 100 is connected to the outside world in two
ways: through the RS$-232C connector and through the modem. The RS-
9%9C connector provides a standard way of connecting two devices directly,
and the modem converts back and forth between the serial bits of data of
the UART and audio signals suitable for transmission over the telephone
lines (see Figure 7-5).

Bit 3 of port BAh= 186d switches between the RS-232C connector and
the modem. When this bit is 0, the UART is connected to the RS-232C
connector, and when this bit is 1, the UART is connected to the modem {see
Figure 7-6).

The modem and the RS-232C connector behave much the same Lo a
programmer. There are, however, several differences. The modem has the
automatic dial function, and the RS-232C connection has some extra status
and control signals. As we shall sce, dialing is done by taking the telephone
rapidly on and off its hook. The extra signals for the RS-232C connector
are RTS (Ready to Send), DTR (Data Terminal Ready), CTS (Clear to
Send), and DSR (Data Set Ready). The Model 100 is set up as a data
terminal; thus, the first two signal lines are output, and the second two are
input.

ROM Routines for the Communications Devices

The ROM routines for the communications devices perform such tasks
as handling BASIC interrupts, initializing the UART, switching between
the modem and RS-232C connector, reading from and writing to the UART,
and dialing the phone.

The BASIC Interrupt Commands

BASIC has interrupt commands for the communications line that are
similar to those for the clock and the keyboard. The interrupt control com-
mands are ON MDM GOSUB, ON COM GOSUB, MDM ON, COM ON,
MDM OFF, COM OFF, MDM STOP, and COM STOP. The keyword MDM
refers to the modem, and the keyword COM refers to the communications
line in general, but, the same routines are used to handle both cases. This
is because the interrupts happen in the UART, which lies between the
computer and both these methods of transmitting serial data.

Figure 7-5. The modem

174 Hidden Powers of the TRS-80 Model 100

Hidden Powers of the Communications Devices 175_ ’

In Chapters 5 and 6 we discussed how BASIC interrupt routines operate
on the BASIC interrupt table (starting at F944h = 63,812d). The first three
bytes of this table are reserved for the COM or MDM interrupt and contain
the interrupt status word and the location of the BASIC interrupt subrou-
tine for the communications devices.

Initializing and Shutting Down the UART

The routine to initialize the UART is called INZCOM and is located at
6EAG6h=28,326d (see box). This routine will help you to write your own
code to set up the UART any way you want.

Routine: INZCOM

Purpose: 10 initialize the UART that controls the communications
line

Entry Point: 6EAGh = 28,326d

Input: Upon entry, it expects the H register to specify the baud rate
(1 through 9 as used in the STAT program), the L register to contain
the UART configuration code, and the carry flag to indicate whether
the modem or the RS-232C connector is to be used (set if RS-232C
and clear it modem). In the configuration code, bit 0 specifies the
number of stop bits (0= 1 stop bit and 1 =2 stop bits), bits I and 2
specify the parity (00=none, 01 =even, and 10=o0dd), and bits 3
_ and 4 specity the word length (00=6, 01 = 7, and 10 =8 bits).

Select e Output: When the routine returns, the UART is properly initialized.

BASIC Example:

CaLL ZB3ZE:@:H

where H is a 16-bit number that contains the configuration infor-
mation as specified above.

Special Comments: This routine will not update the configuration
informaton that is stored in memory; thus, it is not permanent.

1f the carry flag is clear, the modem was selected. In this case, the routine
loads a 3 into the H register and 2Dh = 45d into the B register. This sets the
baud rate to 300 and turns the modem on. Then it disables interrupts using
the DI command and calls a routine called BAUDST to set the baud rate.

Figure 7-6. Switching between the modem and the R$-232C

176 Hidden Powers of the TRS-80 Model 100 _ : Hidden Powers of the Communications Devices 177

178

The BAUDST routine is located at 6E75h =28,277d (see box). It ex-
pects the H register to contain a number from 1 to 9 that specifies the baud
rate, as described above. This routine uses a table located at 6E94h = 28,308d
to look up the correct patterns to send to ports BCh= 188d and BDh = 189d.
These ports program a timer in the 8155 PIO chip to produce a square
wave, which is sent to the UART to control the baud rate.

Routine: BAUDST
Purpose: To set the baud rate for the serial communications line
Entry Point: 6E75h =28277d

Input: Upon entry, the H register contains a number from 1 to 9
that specifies the baud rate, using the same correspondence as is
used by the STAT program.

Output: When the routine returns, the baud rate is set as specified.

BASIC Example:

CALL EBEZ77:@:H

where H is 256 times (because it’s the H register) the baud rate
number decribed above.

Special Comments: None

For example, il you select 300 baud, the fourteen-bit binary number will
have a value of 512 in the table. The baud rate will be 4,915,200 divided by
2, divided by 512, divided by 16, which is exactly 300.

After ports BCh=188d and BDh=189d are programmed, port
B8h = 184d is set to a value of C3h = 195d. The upper two bits of this byte
start the numer, and the lower six bits define how ports BOh = 185d,
BAh=186d, and BBh=187d are to be used. They are not changed from
the way that they are originally initialized. The BAUDST routine then
returns,

"The INZCOM routine continues by sending the contents of the B reg-
ister out port BAh = 186d. If the modem is specified, 2Dh =45d is sent, zn;d
if the RS-232C connector is selected, 26h = 37d is sent. The difference is bit
3, which controls the switch selecting between these two modes of operation
for the serial hine.

Next the INZCOM routine sends the configuration code to the UART
via port D8h =216d. The upper three bits are masked off because they are
not used.

Next the routine at 6F39h =28,473d is called (see box). This routine
clears three locations: FF40h =65,344d, FF86h=65,414d, and
FF88h=65,416d. The first of these locations controls the XON/XOFF pro-
tocol, the second specifies how many bytes are in the buffer for incoming
characters from the sertal communications line, and the third is a pointer 10
the position in the buffer for incoming characters.

Bits 6 and 7 of port BDh = 189d are always set to (1. This specifies that
the output of the timer is a continuous square wave. The other possibilities
are 00 for a single cycle of square wave, 10 for a single pulse, and 11 for
continuous pulses. The other bits of these ports form a fourteen-bit binary
number. Bits 0 through 7 of port BCh=188d form the lower eight bits, and
bits 0 through 5 of port BDh= 189d form the upper six bits. In a moment
we will explain how this number helps to determine the baud rate, but first,
let’s trace the clock signals that control the baud rate.

The timing signal for the baud rate originates with the 4,915,200 cycles
per second crystal that runs the CPU and provides the timing for the main
circuits of the computer. The CPU divides this frequency in half and sends
it on to drive other devices such as the timer in the 8155 PIO. This timer
further divides the frequency by the fourteen-bit binary number previously
referred to. The result is passed to provide a baud rate clock for both the
receiver and the transmitter circuits in the UART. The actual baud rate
produced by the UART is one sixteenth of the frequency of this last signal.

Hidden Powers of the TR$-80 Model 100

Routine: Initialize Serial Buffer Parameters

Purpose: To initialize parameters that manage the serial communi-
cations line.

Entry Point: 6F39h =28,473d
Input: None

Output: When the routine returns, three locations —
FF40h=65,344d, FF86h =65,414d, and FF88h=65,416d — are
cleared.

BASIC Example:

Caly Zsd7d

Special Comments: None

Hidden Powers of the Communications Devices

179

Next the INZCOM places a value of FFh=255d in location
FF43h =65,347d and returns. This location tells the system when the serial
communications line is active. The return is made by jumping to a place
where there is the proper number of POPs and then a RETurn. This just
happens to be the very last part of the background task discussed in Chap-
ters 4, b, and 6.

The function of the CLSCOM routine (see box) is the opposite of that
for the INZCOM routine: CLSCOM deactivates the communications line.
It is located at 6ECBh =28,363d. It sets bits 6 and 7 of port BAh = 186d.
Bit 7 hangs up the telephone, and bit 6 places the DTR (Data 'Terminal
Ready} line of the RS-232C connector in the “not ready” state.

Routine: CLSCOM

Purpose: 'To deactivate the serial communications line
Entry Point: 6ECBh = 28363d

Input: None

Output: When the routine returns, the telephone connection is
broken and the RS-232C DTR line is placed mn the “not reacy”
state.

BASIC Example:

Sall £8de3

Special Comments: None

The routine for dialing the telephone is called DIAL and is located at
532Dh=21,293d (see box). Upon entry the HL register pair contains the
address of the telephone number. The routine first sets bit 3 of port
BAh = 1864, selecting the modem instead of the RS-232C connector. Next
the routine calls a routine at 5359h =21,337d, which does the actual dialing
(see box).)

Routine: DIAL
Purpose: To dial the telephone
Entry Point: 532Dh=21,293d

Input: Upon entry, the HL register points to where the telephone
number is stored in memory.

Output: The routine dials the telephone number
BASIC Example:

EALL Z1283.6:H

Special Comments: None

Dialing the Telephone

The Model 100 dials the telephone by a method that in effect, rapidly
takes the telephone on and off the *hook”. A relay in the modem circuit acts
as the “hook”. This relay is controlled by bit 7 of port BAh= 186d. When
the telephone is hung up, this bit is 1, and when the telephone is oft the
hook, 1t is 0.

After we present the ROM routines for dialing the telephone, we will
provide a program that shows how you can dial the telephone from BASIC.

180 Hidden Powers of the TRS-80 Model 100

Routine: Dialing Routine
Purpose: o dial the telephone
Entry Point: 5359h=21,337d

Input: Upon entry, the HL register pair points to where the tele-
phone number is stored in memory.

Output: The routine dials the telephone.
BASIC Example:
CALL 213378 +H

where H is the address of the telephone number

Special Comments: None

Hidden Powers of the Communications Devices

181

The dialing routine at 535%h = 21,337d calls various other routines and

then gets down to the business of dialing the telephone. The dialing loop
runs from 5370h=21,360d to 539Bh =21,403d. At the top of the loop, a
check is made for the (BREAK) key, and the dialing routine is exited if
is detected. Next, if the routine continues, a digit or other symbol
is fetched from the telephone number string. It is checked to see if it 1s a
special symbol such as CR, LFE, or Z. 1t it 1s a CR/LF sequence or a
Z, the routine jumps to a section of code in which the auto log on
sequence is performed. If it is not, the routine skips any spaces in the
telephone number and sets the carry if it finds a digit. It there was a digit,
it calls a routine at 540Ah =21 514d to dial the digit (see box).

Routine: Dial a Digit

Purpose: To dial a digit of a telephone number

Entry Point: 540Ah=21,614d

Input: Upon entry, the digit (ASCII code or actual value) is in the A
register.

Output: When the routine returns, the digit 1s dialed.

BASIC Example:

CALL 215144

where A contans the digit

Special Comments: None

52BBh=21,179d (see box). The “disconnect” is made by setting bit 7 of

port BAh =186d equal to 1, leaving the other bits undisturbed. Next the E
register of the DE pair is used to count a delay with the telephone on the
hook. The pulse loop then reconnects the telephone by calling a routine at
52B4h =21,172d, which clears bit 7 of port BAh = 186d. This is part of the
“ofhcial” routine for connecting the phone line that begins at 52D0h =21,200d
(see box). Finally, the D register is used to count a delay with the telephone
off the hook (connected). During the pulse loop, interrupts are disabled
(using the DI instruction) bec1use the timing loops are critical and must not
be interrupted.

Routine: DISC

Purpose: To disconnect the telephone line

Entry Point: 52BBh=21,179%d

Input: None

Output: When the routine returns, the telephone line is disconnected.

BASIC Example:

CALL 21178

Special Comments: None

The digit dialing routine at 540Ah=21,514d prints the digit on the
screen, then converts it from ASCII to a numerical value by masking off all
but the lower four bits and converting zero values to ten. This numerical
value is used as a loop counter to control the number of pulses that are to
be sent out. Note that a zero on the telephone dial is really a ten when sent
over the line.

The pulse loop begins by getting the timing delay selected by STAT (10
or 20) and using it to set a counter in the DE register pair for a pair of delay
loops that control the pulse timing. If a rate of 10 pulses per second was
selected, a value of 2440h =9280d is chosen, and if a 20 pulse per second
rate was selected, a value of 161Ch =5660d is chosen. Next the pulse loop
disconnects the phone by calling a routine at 52C1h=21,185d. This is part
of the “official” routine for disconnecting the phone line that begins at

182 Hidden Powers of the TRS-80 Mode! 100

Routine: CONN

Purpose: '[o connect the telephone line
Entry Point: 52D0h = 21,200d

Input: None

Output: When the routine returns, the telephone line is connected.
BASIC Example:

Chtl Z1Z2ée

Special Comments: None

Hidden Powers of the Communications Devices

183

After the pulse loop there is a short delay to separate the digit from
other digits of the telephone number. Then the dialing routine continues by
checking for more special characters, including “<” for beginning of the
auto log on sequence and =" for a two-second delay.

The routine for the auto log on sequence begins at 539Eh =21,406d
(see box). It calls serial communications line routines to send and receive
characters through the modem as specified by the user. The auto log on
sequence then returns to the main DIAL routine.

Routine: Auto Log On
Purpose: 'Io send auto log on sequence
Entry Point: 539Eh =21 ,406d

Input: Upon entry, the HL register pair points to the descriptor for
the auto log on sequence.

Output: The routine sends the auto log on sequence out the serial
communications line.

BASIC Example:

CALL Z21406,9 «H

where H is the address where the auto log on sequence is stored in
memory.

Special Comments: None

In DIAL, bit 3 of port BAh=186d is restored to its original value, and
various other business is taken care of depending upon whether you are in
terminal mode or just using the computer to dial a voice call for you.

Dialing from BASIC

Here is a BASIC program that uses the DIAL routine to dial a telephone
number. It prompts you for the telephone number and then dials the num-
ber for you. You can use this program as a starting point for developing
more elaborate telephone routines. For example, you could write a program
that waits until a specified time, dials a certain number, logs onto a computer
at the other end of the line, sends some data, and then hangs up the
telephone.

184 Hidden Powers of the TRS-80 Model 100

lea -

i@
12@
130
140
i50
16O
174
=1
1aa

DIAL A TELEPHONE NUMBER
INPUT “"TELEPHONE NUMBER"ITS$
8% = TH+CHRS(13)

= VARPTR{GE)

H PEER{B+1}+E0GB%PEEK (G5+2)
CAatl Z1E93.8.H

OALL 21178

PRINT

LETO 124

1%

it

On line 120 of this program, the telephone number is input by the user.
On lines 130-150, the address where this number is stored in memory is
computed. On line 160, the DIAL routine is called with the address of this
telephone number in the HL register pair. On line 170, the program hangs
up the telephone, assuming that the user is on the line with a regular
handset. On line 190, it loops back to try another number.

Reading from the Serial Communications Line

The serial communications line is interrupt driven. That is, whenever
characters are ready to be received, the UART actuates an interrupt to a
special routine to put the character in a buffer (see Figure 7-7). Whenever
the computer needs a character from the communications line, it checks the
buffer, not the UART directly. Let’s look at the routines to handle the
interrupt and to fetch characters from the buffer.

The Serial Communications Interrupt Service Routine

The interrupt service routine for the serial communications line takes
in characters from the line as they are generated. Whenever the UART
recetves another character, it triggers an interrupt.

The Model 100 uses interrupt 6.5 for input to its serial communications
line. This means that whenever the interrupt is triggered, the GPU stops
what it is doing (if this interrupt is enabled) and calls location 34h =52d.
On the Model 100, the code starting at 34h = 52d disables further interrupts
and jumps to location 6DACh = 28,076d.

The interrupt service routine for the serial communications line contin-
ues at location 6DACh = 28,076d (see box). It first calls a routine in RAM
at F5FCh=62,972d. This normally consists of just a RETurn instruction.
Since it is in RAM, it provides a way for you to take control of the interrupt
routine, perhaps placing a jump at F5FCh =62,972d to your own interrupt
routine for the serial communications line. For example, you could use such
a routine in a communications program that transfers files in special formats.

Hidden Powers of the Communications Devices

185

for bytes as they are removed from the buffer by other routines. Another

Routine: Serial Interrupt Service Routine variable, located at FF86h=65,414d, keeps track of the number of bytes
currently stored in the buffer.

The buffer management routine starts by pushing the HL, DE, BC, and

PSW registers onto the stack, saving what the CPU was doing just before

Purpose: 'lo read a character from the serial communications line
Entry Point: 6DACh = 28076d

Input: Upon entry, a character is ready for input from the serial : the interrupt occurred. Then the address 71F7h = 29,175d is pushed onto
communications line. £ the stack, providing a return address with the proper sequence of POPs to
Output: When the routine returns, the character is placed in the restore the registers upon return from the interrupt. Again, this code is

borrowed from the background task.

Next, port C8h=200d is read into the accumulator. This is the data
byte from the serial communications line. It will be placed in the circular
bufter. First, however, it must be processed according to the choice of parity.

serial communications input buffer.
BASIC Example: Not applicable

Special Comments: None

The main part of the interrupt routine manages input to a circular
buffer from the serial communications line. A circular buffer is a butfer that
wraps around on itself (see Figure 7-8). This particular circular buffer is 64
bytes long, starting at location FF46h=65,350d. A pointer at
FF88h=65,416d gives the position within the buffer for bytes as they are
input from the serial line. A pointer at FF87h =65,415d gives the position

Figure 7-7. The UART inferrupt

Figure 7-8. A circular buffer

186 Hidden Powers of the TR5-80 Model 100 Hidden Powers of the Communications Devices 187

The byte is ANDed with the contents of FF8Dh=65,421d. If parity is
ignored, this location contains 7Fh = 127d; otherwise, it contains FFh = 255d.
In the first case it masks off the parity, and in the second case it has no
effect. The result is moved to the C register.

Next, the routine checks for errors from the communications line, It
reads port D8h=216d to get the status byte of the UART, Only bits 1, 2,
and 3 are used. The rest are masked off. They carry the following error
signal lines: OE (Overrun Error), FE (Framirig Error), and PE (Parity
Error). The byte containing these bits is saved in the B register for later use.

If all of the error bits are zero, the incoming character is checked for
XON/XOFF protocol characters. If the routine finds Q (XON),
location FF40h =65,344d is cleared, and if it finds S (XOFF), that
location is made nonzero. Next, the routine checks location FF49h — 65,346.
1f this is nonzero, it returns without further action,

Next the routine checks to see if the buffer is already full. It checks
location FF86h=65,414d, which contains the number of characters cur-
rently in the buffer. If this number is equal to 64, the routine returns without
further action because this indicates that the buffer is full, If the number of
characters in the buffer is greater than or equal to 40, an XOFF character
is sent out the communication line because the buffer is getting full. If the
device at the other end of the line is listening, it should soon stop sending
more characters.

Now the character is put in the buffer. First the character count (location
FF86h =65,414d) is incremented. Then a routine at 6DFCh=28,156d is
called to corupute the address of the position in the buffer where the char-
acter should be put (see box), and the character is placed in the buffer at
that position. The routine finishes by recording an error if the status byte
sampled earlier indicates that one occurred.

The computation of the address of the position of the byte in the buffer
is done in several steps. First the pointer is incremented and ANDed with
3Fh=63d. This advances the pointer around a 64-position number wheel
that uses modular or clock arithmetic. The position numbers start at 0, then
I, then 2, and so on to 63. After 63 comes 0 again. To compute the address,
the base address of the buffer is added to the value of this circular pointer.

188 Hidden Powers of the TRS-80 Madel 100

Routine: Address Computation for Circular Buffer
Purpose: To compute the address for a pointer into the circular
butfer

Entry Point: 6DFCh = 28,156d

Input: Upon entry, the HL register pair points to the location in
memory where the pointer is stored. The pointer is contained in a
byte and has a value from 0 to 63.

Output: When the routine returns, the HL register pair contains
the actual address of the buffer entry, and the DE register pair
contains the address of the pointer. The value of the pointer is
incremented unless it was 63, in which case it is set back to 0.

BASIC Example: Not applicable

Special Comments: None

Serial Communications Input Routines

Next, let’s look at the routines that fetch characters from the buffer for
use by the rest of the computer. There is a routine called RCVX to return
the number of characters in the buffer and a routine called RV232C to fetch
a character from the buffer. An assembly-language programmer can use
these routines to send data to the serial communications line.

The RCVX routine is located at 6D6Dh =28,013d (see box). This rou-
tine returns the number of characters currently stored in the serial com-
munications input buffer in the A register. It also sets the Z fag accordingly.
Thatis, if A is zero, then Z is set; otherwise, it is clear,

Hidden Powers of the Communications Devices

189

Routine: RCVX

Purpose: To get the number of characters currently in the serial
communications input buffer

Entry Point: 6106Dh =28,013d
Input: None

Output: When the routine returns, the number of characters cur-
rently stored in the serial communications input buffer is in the A
register, and the Z flag is set accordingly.

BASIC Example: Not applicable

Special Comments: None

The RCVX routine gets the number of characters currently in the butfer
from location FF86h=65,414d, ORing it with itself to set the zero flag if
the buffer is empty (Z means empty and NZ means not empty). It also
checks locations FF40h =635,344d and FF41h =65,345d for special condi-
tions involving the XON/XOFF protocol.

The RV232C routine is located at 6D7Eh = 28,030d (see box), Its job is
to get a character from the serial communications input buffer. Upon exit
the A register contains the ASCII code of the character from the buffer.
The zero flag is set (Z) if there is no error and clear (NZ) if there was an
error. The carry is set (C) if the key was hit and dear (NC) otherwise.

Routine: RV232C

Purpose: To get a character from the serial communications input
buffer

Entry Point: 6D7Eh =28,030d
Input: None

Output: When the routine returns, the A register contains the
ASCII code of the character from the buffer. The zero Hag s set
{Z) it there is no error and clear (NZ) if there was an error. The
carry is set (C) if the key was hit and clear (NC) otherwise.

BASIC Example: Not applicable
Special Comments: None

190 Hidden Powers of the TRS-80 Mode! 100

"The RV232C routine pushes the HL, DE, and BE registers on the stack
and pushes the address 71F8h=29,176d on the stack for the return ad-
dress. This is where the proper number of POPs and a RETurn are located.

Next the RV232C routine goes into a loop in which it waits for a char-
acter Irom the buffer. The loop first calls a routine at 729Fh = 29,343d to
check for a key, returning with the carry set if it detects this key
(see box). If there was no (BREAK), the RCVX routine is called to check the
queue. If the queue is empty, the loop keeps looping. The loop will exit
normally as soon as there is a character in the buffer.

Routine: BREAK check

Purpose: 1o check for key

Entry Point: 729Fh =29,343d

Input: None

Output: The routine returns with the carry flag set if it detects the

key,

BASIC Example: Not applicable
Special Comments: None

If there are fewer than three characters in the buffer, a routine called
SEND Q, at 6EOBh=28,171d, is called to send Q (XON) out the
communications line (see box later in the chapter).

‘The RV232C then gets the next character out of the buffer, using the
routine at 6DFCh=28,156d (described earlier) to compute its address within
the buffer. It checks for an error condition left by the interrupt service
routine and then returns.

Writing to the Serial Communications Line

There are two routines for sending characters out the serial communi-
cations line: SNDCOM and SD232C. The first simply sends characters,
while the second uses the XON/XOFF protocol. If you are an assembly-
language programmer, you can use these routines to send bytes out the
serial communications line.

The SNDCOM routine is located at BE3Ah = 28,218d (see box). It sends
a single byte out the serial communications line, cither to the modem or to
the RS-232C connector, whichever is currently selected. It expects the char-
acter in the C register.

Hidden Powers of the Communications Devices

191

Routine: SNDCOM
Purpose: To send a character out the serial communications line
Entry Point: 6E3Ah=28 218d

Input: Upen entry, the ASCII code of the character is in the G
register.

Output: The routine sends the character out the serial communi-
cations line.

BASIC Example: Not applicable

Special Comments: None

The SNDCOM routine contains a loop that waits for the communica-
tions line to be ready to output the next character. This loop calls the
detector routine at 729Fh=29,343d (described previously) and
then reads port D8h = 216d, checking bit 4 to sec if the UART is free to
accept the next character. If the bit is zero, the loop continues looping;
otherwise, it does a normal exit, and the routine continues and sends the
character out port G8h = 200d before it returns.

The SD232C routine is located at 6E32h = 28,210d {see box). 1t sends
a character out the communications line using the XON/XOFF protocol.

Routine: SD232C

Purpose: 1o send a character out the communications line using the
XON/XOFF protocol

Entry Point: 6E32h =28,210d

Input: Upon entry, the ASCII code of the character is in the A
register.

Output: The character is sent out the serial communications line.
BASIC Example:

CALL ZHZ10.A

where A is the ASCII code of the character.
Special Comments: None

192 Hidden Powers of the TRS-80 Model 100

104
11@
120
138
14@
1548
iGad
178
1848
188
Z9@

1@
ila
Lae
13@
1448
13a
16@

The SD232C routine calls a routine at 6E4Dh = 28,237d, which does
the protocol. This routine waits if the communications line is to be held up
by an XOFE If a is detected, it returns with the carry flag set. In
this case, the SD232C routine exits without sending the character; other-
wise, it runs on into the SNDCOM routine to send the character,

Serial Transmission from BASIC

Here is a BASIC program that sends characters out the serial commu-
nications line. It prompts the user for a string, sends it out the serial com-
munications line, and then loops back for another string.

" SEND BYTES T0O SERIAL PORT

5

FRINT "STRING TO SgEnNDt
INPUT T4
T = UARPTR(TS)
H@ = PEEK(T:
#l o= PEEK{T+1)+28G#PEEK(T+2)
FOR X = X1 70 ¥i+X¥@e-1
CALL 2BZ10.PEEK ()
NEXT X
GAT0 120

On lines 120-130 of this program, the string is input. On lines 140-160,
the length and address of the string are computed. The variable X0 contains
the length of the string, and the variable X1 contains its address. On lines
170-190, the bytes of the string are sent by getting them one by one from
memory and calling the SD232C routine each time. On line 200, the pro-
gram loops back for the next string.

BASIC also has ways of sending bytes to the communications line with-
out directly calling machine language. The following program shows one
such method.

‘¢ GEND BYTES YO0 COM LINE
OFEN “COM:GEBNIZE" FOR OQUTPUT A3 =1
PRINT "STRING TO SEND®
ITNFPUT Tg
PRINT #1: T%3
GOTO 13@

"This program is shorter and easier to follow than the previous one, but
of course it does not reveal much about the inner workings of the ROM.

Hidden Powers of the Communications Devices

193

Protocal Routines

Now let’s look at the main protocol routine. This routine ‘first checks
location FF42h = 65,546d. If this location is zero, then the communications
line is in a “go” condition, and the protocol routine returns ready to let the
output of the character occur. If this location is nonzero, the line is in the
“stop” condition. In that case, the character is checked to see if it is a
Q (XON). If it is, the routine zeros locations FF8Ah =65,418d and
FF41h=65,345d and returns. If not, it checks for S (XOFF). If the
character is found, a value of FFh=255d is stored in location
FF41h=65,345d, and the routine returns. If not, it goes into a loop that
waits for either the key to be detected (returning with the carry
set) or location FF40h = 65,3444 to be zero.

Let’s finish with two other protocol routines: SENDCQ and SENDCS,
The first sends an XON ((CIRL) Q), and the second sends an XOFF ((CTRL)
S) to the serial communications line.

The SENDCQ routine is located at 6E0Bh=28,171d (see box). It first
checks location FF42h =65,346d. If this is zero, it returns. If not, it checks
location FF8Ah =65,418d. If this is not one, it returns without further
action. 1f this location is one, the routine stores a zero in FFSAh = 65,418d
and returns, sending out an XON character.

The SENDCS routine is located at 6E1Eh=28,190d (see box). Like
SENDCQ, it first checks location FF42h =65,346d. Again, if this is zero, it
returns. Otherwise, it checks location FF8Ah=65,418d. This time it re-
turns if this location is not zero, If it is zero, it sets this location to one and
returns, sending out an XOFF character.

Routine: SENDCQ

Purpose: To turn on the XON/XOFF protocol for incoming char-
acters from the serial communications line

Entry Point: 6EO0Bh =28,171d

Input: None, except for the XON/XOFF control variables
FF42h =65,546d and FF8Ah=65,418d

Output: The routine turns on the XON/XOFF protocol, sending an
XON character (ASCII 1Th=17d) out the serial communications
line if needed.

BASIC Example:

Eall. 2B171

Special Comments: None

Routine: SENDCS

Purpose: 1o turn off the XON/XOFF protocol for incoming char-
acters from the serial communications line

Entry Point: 6E1Eh =28,190d

Input: None, except for the XON/XOFF control variables
FF42h =65,346d and FF8Ah =65,418d

Output: The routine turns off the XON/XOFF protocol, sending an
XOFF character (ASCII 13h = 19d) out the serial communications
line if needed.

BASIC Example:

CaLL 28199

Special Comments: None

194 Hidden Powers of the TRS-80 Model 100

Summary

In this chapter we have studied the two serial communications channels
for the Model 100 computer: the modem, which connects the Model 100 1o
the telephone, and the RS-232C connector, which provides a standard method
for connecting the Model 100 directly to other computers.

We have seen that both communications channels are handled by the
same UART (Universal Asynchronous Receiver Transmitter) chip. We have
shown how to switch between the two channels, how to initialize the UART,
and how to send and receive characters through it. We have also studied the
circular buffer that manages the flow for incoming characters and the XON/
OFF protocol that is used to prevent the buffer from overflowing.

Hidden Powers of the Communications Devices

195

Hidden Powers of Sound

Souncl makes computers more friendly. On the simplest level, for in-
stance, a “beep” sound can inform you that you've made an error while
entering data. In games, sound can provide reinforcement for winning
plays. Sound is likely to be an integral part of the mput/output systems for
personal computers in the future.

In this chapter we will explore the secrets of sound on the Model 100.
You will see how to turn the sound on and off through bits on ports of the
8155 P10 and how to program the timer that produces a tone for the sound
circuit. These techniques have the potential of providing much more ver-
satile control of sound than can be obtained using BASIC. We will also look
at how the BEEP and SOUND commands work.

How Sound Works in the Model 100

The sound circuits in the Model 100 consist of a timer and two switches
(see Figure 8-1). The timer is the same one that generates the baud rate for
the UART, as explained in the previous chapter, and it is programmed in
the same way.

The first of the two switches is controlled by bit 5 of port BAh = 1864d.
It turns the sound on and off. A value of 1 turns it on and a value of 0 turns
it oft.

196

ied
i1d
128
1348
1da
1354
168
17@
189

The second switch is controlled by bit 2 of port BAh = 186d. It connects
and disconnects the output of the timer from the sound circuit, A value of
() makes the connection and a value of 1 breaks the connection.

The following BASIC program demonstrates how the switches and the
timer can be programmed directly to make sounds of various frequencies.
It asks you for the frequency divisor D, which is the value loaded into the
timer. The actual frequency is given by the formula:

2,457,600/D
where D is the divisor that you specity.

* MAKE A S0UND

¢

INPUT "FREGUENCY DIVISOR"ID

©OPROGRAM THE TIMER
OUT 1BEB+(D MDD 2563
QUT 188.:0(DF23B) ANMD 127 OR B4
ouT ig4.1893

PB2

Timer oulput

Figure 8-1. The sound circuit of the Model 100

Hidden Powers of Sound

197

184
Z@d
21a

228

T TURN THE S0OUND ON

S ¥.o= INF(18B) o
OUT 186, (X AND 219) OR 37
GOTO 120

Let’s look at this program in more detail. The frequency divisor D is
input on line 120. On line 150, the lower eight bits are sent to port
BCh = 188d, and on line 160, the upper six bits are sent to port BDh= 189¢.
In addition, bits 6 and 7 of port BDh=189d are set to binary 01. This
ensures that a square wave is produced.

In line 170, the timer is started by sending C3h = 195d to port B8h = 184d.
This port programs the way the timer and the ports on the 8155 PIO chip
will be used. The upper two bits program the timer, and the lower six bits
program the ports. The pattern C3h=195d ensures that the parallel ports
of the PIO will remain as they are,

In lines 200-210, bit 5 is set to one and bit 2 is cleared in port BAh = 186d.
This makes the connections from the timer to the sound circuit.

In line 220, the program Joops back to get the next tone.

The ROM Routines for Sound

ROM routines for sound are used to implement the BEEP and SOUND
commands in BASIC.

The BEEP Command

Let’s start with the “beep” sound. This can be actuated either by the
BEEP command or by sending a G (BEL) to the screen printing
routines.

The code for the BEEP command starts at 4229h = 16,937d (see box).
It simply sends an ASCII 7 (BEL) character to the screen printing routines
via the RST 4 command (see Chapter 4). The screen printing routines
dispatch to the routines for control characters in the code from
4373h=17,267d to 4389h=17,289d, using a table that starts at
438Ah=17,290d. The routine for BEL is located at 7662h = 30,306d.

198 Hidden Powers of the TR5-80 Model 100

Routine: BEEP

Purpose: To sound a beep
Entry Point: 4229h=16,937d
Input: None

Output: To the sound system
BASIC Example:

CALL 1BY37

Special Comments: None

The physical routine to generate the Beep is at 7662h = 30,306d. Here
the routine at 765Ch =30,300d is called to turn off interrupts (see box).
Then the B register is cleared to set up a loop count of 256 for the BEED
loop, which is next. ‘This loop first calls a routine at 7676h = 30,326d to flip
bit 5 of port BAh=186d (see box). Then it calls a routine at 7657h = 30,295d
(see box) to produce a short delay (the C register is loaded with a timing
count of 80). The loop executes 256 times and then returns, turning on the
interrupts.

Routine: Flip the Sound Bit
Purpose: To change the sound switch
Entry Point: 7676h = 30,326d

Input: None

Output: To the sound system

BASIC Example:

Call. 30326

Special Comments: None

Hidden Powers of Sound

199

160
iié
128
13@
14a
134

Routine: Sound Delay

Purpose: 1o produce a delay

Entry Point: 7657h = 30,295d

Input: Upon entry, the C register contains a delay count,

QOutput: The routine returns about 5.7#C + 10.2 microseconds after
it has been called, causing a delay of that length.

BASIC Example: Not applicable

Special Comments: None

Note that this method of producing a tone does not use the timer.

Bit flipping, which rapidly opens and closes the sound circuit, provides
an alternate method of generating sounds. Here is a BASIC program that
illustrates this bit-flipping method. The result sounds almost like a machine
gun. The slightly irregular pattern occurs because the background task has
not been turned off. You can gain better control of the sound system if you
write in machine language. Starting with the ideas in this BASIC program,
you can develop machine-language programs to produce muuch more inter-
esting and sophisticated sounds.

©FLIP THE BITS

FOR I = @ T0O 29
FOR J=1 TO S@e:CALL 32328 :NEXT
FOR J=1 TO 1@eNEXT

REXT 1

The program consists of a nested loop structure. The large loop extends
over lines 120-150. This loop produces twenty pulses of sound. Each pulse
1s generated by line 130, which calls the bit-fipping routine fifty times. A
short pause between the pulses 1s generated by line 140,

The SOUND Command

Now let’s look at the SOUND command. The code for this command
begins at 1DChh=7621d (see box). Here the commands SOUND ON and
SOUND OFF are checked for. If neither is indicated, the frequency and
length parameters are loaded, and the routine jumps to location
72C5h=29,381d (see box). At this location you can find a routine called
MUSIC.

200 Hidden Powers of the TRS-8C Model 100

Routine: SOUND

Purpose: 'Io control the sound or make a note (depending upon the
syntax)

Entry Point: 1DC5hh=7621d

Input: Upon entry, the HL register pair points to the end of the
tokenized SOUND command line (right after the token for SOUND).

Output: Depending upon the syntax of the command line, one of
the following BASIC commands is executed: SOUND, SOUND ON,
or SOUND OFFE

BASIC Example:
LCALL 2938104

where H is the address of the end of the tokenized command line
for a SOUND command.

Special Comments: None

Routine: MUSIC
Purpose: To play a note of given frequency and duration
Entry Point: 72C5h=29,381d

Input: Upon entry, the DE register pair contains a pitch number as
described on page 180 of the Model 100 owner’s manual, and the B
register contains the duration in approximately 1/50ths of a second.

Output: 1o the sound system
BASIC Example: Not applicable

Special Comments: None

The MUSIC routine expects the frequency divider in the DE register
pair and the duration in the B register. The routine first disables interrupts
with the DI instruction. This is needed because of the timing loop. The
contents of the DE register pair are then loaded into ports BCh = 188d and
BDh=189d to set the timer, with the E register going to BCh = 188d and
the D register (ORed with 40h=64d) going to BDh=189d. This is much

Hidden Powers of Sound 201

like lines 150-160 of our “Make a Sound” BASIC program. Also as in our
BASIC program, the value C3h=195d is sent to port B8h = 184d to start
the timer. Next, bit 5 is set and bit 2 is cleared in port BAh = 186d, again as
in the BASIC program. A break check is made by calling the routine at
729Fh =29,343d (see box). Then a timing loop at 72EAh = 29,418d counts
the specified delay. Finally, the tone is turned off by setting bit 2 of port
BAh=186d and resetting the baud rate into the timer.

Hidden Powers of the
Cassette

Summary

In this chapter we have shown how to program the sound circuits of the
Model 100, including two BASIC example programs. We have also shown
how the BEEP and SOUND commands are implemented in ROM routines.

Ee tape cassette interface provides an inexpensive way to save and
retrieve programs and other kinds of files on the Model 100. In this chapter
we will explore the powers of the cassette interface. We will show how to
turn the cassette motor on and off through bits on ports of the 8155 PIO
chip. We will also explain how to read and write data to the cassette.

How the Cassette Interface Works

T'he hardware that interfaces the Model 100 to a tape cassette player
has three major components: motor control, writing data, and reading data.

"The motor control circuit consists of a relay driven by an amplifying
transistor, which in turn is controlled by bit 3 of port E8h = 232d (see Figure
9-1). A value of () in this bit turns off the cassette motor, and a value of 1
turns it on.

The circuit for writing data to the cassette player converts two-level
digital information from the SOD (Serial Out Data) pin on the 8085 CPU

202 Hidden Powers of the TRS-80 Model 100 203

to a waveform suitable for recording on cassette tape (see Figure 9-2). This
signal is sent out the cassette connector to the AUX input of the cassctte
recorder.

The SOD pin is activated by the SIM instruction of the 8085 CPU. SIM
is a dual-purpose instruction. In addition to controlling the SOD pin, it is
used to set interrupts 7.5, 6.5, and 5.5 (see Chapter 3). Before the SIM
mstruction is used, the accumulator must be loaded with a bit pattern, If
bit 5 is set, the instruction is used to control mterrupts; if bit 6 is set, it is
used to control the SOD line, sending the value of bit 7 there.

The circuit for reading data from the cassette player converts the signal
from the cassette player back into two-level digital information for input
into the SID (Serial In Data) pin of the 8085 CPU (sce Figure 9-2).

The SID pin is monitored by the CPU’s RIM instruction. After this
instruction is executed, the value of the SID line is found in bit 7 of the
accumulator.

In the next section we will explore the routines that the Model 100 uses
to write and read data bytes serially through these circuits.

The ROM Routines for the Cassette System

Let’s start with motor control. Then we’ll move on to the read and write
routines.

‘Turning the Cassette Motor On and Off

"T'he cassette motor circuit is normally used to do what its name implies,
namely, to turn the cassette motor on and off while reading or writing data

Resistor-capacitor
network

Resistor-capacitor
network

Figure 9-1. Motor control circuit

Figure 9-2. Cassette data output and input circuits

204 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the Cassette 205

to the cassette player/recorder. However, this motor circuit can be used to
control other devices as well, such as relays that turn on and off appliances
or lab equipment.

The routine to turn on the tape cassette motor is called CTON and is
located at 14A8h =5288d (see box). This routine disables interrupts using
the DI instruction, loads a nonzero value into the E register, and then jumps
to a routine called REMOTE, which does the action.

Routine: CTON

Purpose: To turn on the tape casseite motor

Entry Point: 14A8h=5288d

Input: None

Output: The tape cassette motor circuit is turned on.
BASIC Example:

Call 3288

Special Comments: None

The REMOTE routine is located at 7043h = 28,739d (see box). It turns
the cassette motor on or off. Upon entry, if the E register is nonzero, it turns
on the cassette motor. If the E register is zero, it turns off the cassette motor.

Routine: REMOTE

Purpose: Io control the tape cassette motor

Entry Point: 7043h =28,7%9d

Input: Upon entry, the E register indicates whether the motor is to
be turned on or off. A zero value in E indicates ofl, and a nonzero
value in E indicates on.

Output: To the tape cassette motor circuit

BASIC Example: Not applicable

Special Comments: None

The REMOTE routine uses bit 3 of port E8h=232d to control the
cassette motor. Other bits in this port control other devices such as the
optional ROM (bit 0), the printer (bit 1), and the clock (bit 2). To make sure
that the REMOTE routine changes only this one bit, a copy of the contents
of port EBh = 232d is maintained in memory at location FF45h = 65,349d.
The REMOTE routine first reads the contents of this location into the
accumulator and then clears bit % of the accumulator. Next, it checks the E
register. If register E is nonzero (as it is coruing from the CTON routine),
the routine ORs the accumulator with 8, setting bit 3. If register E is zero,
it leaves the accumulator as it was, with bit 3 clear. In either case, it sends
the result to port E8h =232d and also stores it in location FF45h = 65,349d
before returning.

‘The routine to turn the tape cassette off is called CTOFF and starts at
location 14AAh =5290d (see box). This entry point is right in the middle
of a CPU instruction that belongs to the CTON command, so the code
differs, even though it is shared by the two routines. This tine it enables
interrupts using the EI instruction and then loads zero into the E register
before jumping to the REMOTE routine. This time the REMOTE routine
clears bit 3 of port EBh=252d, turning off the cassette motor,

Routine: CTOFF

Purpose: To turn the tape cassette motor off

Entry Point: 14AAh =5290d

Input: None

Output: The tape cassette motor circuit is turned off.
BASIC Example:

CALL 5290

Special Comments: None

206 Hidden Powers of the TRS-80 Model 100

Here 1s a BASIC program that directly controls bit 3 of memaory location
FF45h =65,349d, turning it on and off. BASIC sends this byte out port
E8h =232d as part of its normal housekeeping; thus we do not have to
explicitly do so ourselves in this program. You should note that BASIC has
built-in commands to turn the cassette motor on and off; so it is not nor-
mally necessary to get down to this level.

Hidden Powers of the Cassette

207

192
11@
120
138
14@
158
16@

£ CASBETTE MOTOR CONTROL

)

INPUT *BIT VALLUE FOR MOTOR"IX
¥ o= PREK{GS349)

Yo= (Y AND Z247) ORrR d#{x AND 1)
POKE BE348 .Y

GOTh 12é

On line 120 of this program, we get the bit value {0 or 1) for the motor
control bit. On line 130, we get the contents of memory location
FF45h=65,349d. This is the Model 100’s record of port E8h=232d. On
line 140, we insert the new bit value in the byte, and on line 150, we put it
back into location FF45h =65,349d. On line 160, we loop back for another
bit value,

Writing to the Gassette

The routines to write to the cassette are at several levels and involve two
kinds of activity: I) sending ordinary data bytes and 2) sending special
header bytes.

Ordinary Data

Let’s start with the first case, sending ordinary data bytes to the cassette
recorder. The lowest-level routine for doing this is called DATAW and is
located at 6F5Bh=28,507d (see box).

Routine: DATAW

Purpose: To send a byte to the cassette recorder

Entry Point: 6F5Bh = 28,507d

Input: Upon entry, the A register contains the byte to be written.
Output: The byte 15 sent to the tape cassette recorder.

BASIC Example:

Catl 2832374

where A contains the data byte that is to be sent to the tape cassette
recorder.

Special Comments: None

‘The DATAW routine expects the outbound byte in the A register. If the
key was hit during the routine, it returns with the carry set; other-
wise it returns with the data byte sent and the carry flag clear.

For each outbound byte, the DATAW routine sends nine cycles of an
electrical signal to the cassette recorder. The first cycle is a synchronizing
signal corresponding to a bit value of zero, and each of the remaining eight
cycles corresponds to one of the eight bits in the outbound byte. For each
bit, a vatue of zero is sent as a single cycle that lasts about 837 microseconds,
and a value of one is sent as a single cycle that lasts about 418 microseconds.
Notice that the cycle for a value of 1 is just about one half the length of the
cycle for the value 0. The corresponding frequencies are about 1,195 cycles
per second for 0 and about 2,391 cycles per second for 1.

The individual bits are sent via a routine located at 6F6Ah = 28,6224
(see box). This routine rolls the accumulator left one position, bringing
what was the leftmost bit into the carry. The carry then contains the next
bit to be sent. If the carry is clear, a value of 4349h = 17,225d is loaded into
the DE register pair; otherwise, a value of 1F24h=7972d is left in DE.
These values control timing loops governing how long the SOD line is kept
low and how long it is kept high. In other words, these values control the
shape of the waveform that is sent through the SOD line.

Routine: Write Cassette Data Bit
Purpose: 1 send an individual bit to the tape cassette recorder
Entry Point: 6F6Ah =28,522d

Input: Upon entry, bit 0 of the A register contains the bit to be sent
to the tape cassette recorder.

Output: The bit is sent to the tape cassette recorder.
BASIC Example:

CALL EZBSEZ,4

where A contains the value of the A register.

Special Comments: None

208 Hidden Powers of the TRS-80 Mode!l 100

Let’s look at this routine in more detail. During the first tuming loop
(controlled by the D register), the SOD signal is assumed to be low. Right
after this loop, the SIM instruction is used to raise the SOD line to a high
value of 1. Next, the second timing loop (controlled by the E register) delays

Hidden Powers of the Cassette

209

while the SOD line retains the value 1. Then the SIM instruction is used to
bring the SOD line low again. Finally, the routine jumps to the
check routine at 729Fh = 29,343d (see Chapter 6} for its return.

The timing values put into the D and E registers have been carefully
chosen to account for delays caused not only by the timing loops themselves
but by the surrounding code. We found that for a bit value of 0, the SOD
line was held low lor 1027 CPU dock cycles and high for 1030 CPU clock
cycles. For a bit value of 1, the SOD line was held low for 516 cycles and
high for 512 cycles. Although the high/low times vary somewhat irregularly,
the total number of cycles for a bit value of 0 is 2057, which is just about
twice the total of 1028 cycles that we found for a bit value of 1. Since the
CPU’s clock runs at 2,457,600 cycles per second, you can compute how long
each cycle is. As mentioned before, the cycle times are about 837 and 418
microseconds, respectively.

The CSOUT routine is the next higher level routine for sending data
bytes to the cassette recorder. It is located at 14C1h=5313d (see box). In
addition to sending out bytes to the cassette, it manages a special error
checking byte called a checksum.

Routine: CSOUT

Purpose: To send a data byte to the tape cassette recorder and
update the checksum

Entry Point: 14C1h=5313d

Input: Upon entry, the data byte is in the A register, and the
current checksum is in the G register.

Output: The data byte is sent to the tape cassette recorder and the
checksum is updated.

BASIC Example: Not applicable

Special Comments: None

Let’s sec how the checksum works. Bytes are sent to the cassette in
blocks. For a BASIC program saved in regular non-ASCII form, the whole
program is sent as one block. For ASCII files, however, the bytes are pack-
aged in 256-byte blocks. The checksum is computed for each block as the
lower eight bits of the sum of all the bytes in the block. This is not as
complicated as it sounds, because the sum is computed using an eight-bit
register; thus, only the lower eight bits of the answer are retained.

210 Hidden Powers of the TRS-80 Model 100

The negative of the checksum byte is placed at the end of the block.
When the block is read, all the bytes of the block, including the byte from
the checksum, are summed into a byte. The result should be zero; if it is
not, an error must have occurred. If the result is zero, there is only a smali
chance that there is an error.

‘The CSOUT routine expects the outbound byte in the A register and
the previous value of the checksum in the C register. It returns with the
updated checksum in the C register.

The CSOUT routine pushes both the DE and HL register pairs on the
stack. It then adds the value of the outbound byte to the the previous value
of the checksum in the C register, and the result is placed back in the C
register. Next, the DATAW routine is called to put the byte out to the
cassette. If upon return from this routine the carry is set, the cassette motor
is turned off by calling CTOFF and an 10 error is declared. This happens
only if a is detected. If the carry is clear, the CSOUT routine
returns, POPping register pairs so that the BC, DE, and HL registers are
all preserved.

It is technically possible to write BASIC programs that send bytes to the
cassette recorder by calling the DATAW routine. However, BASIC is too slow
to attain the close timing of bytes that would be required for recording
actual data.

Synchronizing Header

Since bits are recorded serially on tape, there has to be a way for the
cassette-reading logic to find and lock onto the first and then the subsequent
bits of each byte. Some computers use UART's and moderus to create syn-
chronizing information for recording cach byte serially on tape. However,
the Model 100 uses much simpler hardware and synchronizes entire blocks
of bytes.

Each block of data begins with a series of special bit patterns that align
the timing of the Model 100’ cassette tape reading software so that it hits
the right place in the code to accept the first bit of the first byte of each
block of data. These synchronizing bit patterns make up the header bytes.

Let’s look at the routine to write the special header bytes. This routine
is called SYNCW, and it is located at 6F46h = 28,186d (see box). It consists
of a loop that puts out 512 bytes with the value 55h = 85d and one byte with
the value 7Fh=127d. It calls a routine at 6F5Eh = 28,510d to send out the
bytes (see box). This routine is essentially the DATAW routine without the
first synch bit. The effect is a rapidly alternating pattern of zero and one bit
values followed by a byte value of 7Fh = 127d.

Hidden Powers of the Cassetie

211

Routine: SYNCW

Purpose: To write the synchronizing header to the tape cassette
recorder

Entry Point: 6F46h = 28,486d
Input: None

Output: The synchronizing header is written to the tape cassette
recorder.

BASIC Example:

CALL 284885

Special Comments: None

The actions of turning on the cassette motor and sending the special
header are combined i1 one routine located at 148Ah=5258d (see hox).
This routine first calls the CTON routine and then calls the SYNCW rou-
tine. If the SYNCW routine returns with an error (carry set because of a
during DATAW), it calls the error routine at 45Dh=1117d with
the code for “10 error” in the E register. If there was no error, the routine
simply returns.

Reading from the Cassette

The routines to read data from the cassette, like those for writing,
consist of those for ordinary data bytes and those for the synchronizing
header. 7

Ordinary Data

Lets start with the ordinary data bytes. The DATAR routine, with entry
point at 702Ah=28,714d, is at the lowest level (see box). It returns the
incoming byte in the D register. If the (BREAK) key was hit, DATAR returns
with the carry set; otherwise, it returns with the carry clear.

Routine: DATAR

Purpose: 1o read a byte from the tape cassette player
Entry Point: 702Ah = 28,714d

Input: None

Outpui: When the routine returns, the D) register contains the data
byte from the tape cassette player.
BASIC Example: Not applicable

Special Comments: None

Routine: Start Cassette Write

Purpose: To start writing to the tape cassette recorder
Entry Point: 148Ah=5258d

Input: None

Output: The tape cassette motor is turned on, and the synchroniz-
ing header is written to the tape cassette recorder.

BASIC Example:

CALL 558

Special Comments: None

212 Hidden Powers of the TRS-80 Model 100

The DATAR routine consists of two loops. The first loop waits for the
synch bit, and the second loop picks up the eight data bits.

The DATAR routine calls a routine at 6FDBh = 28,6354d to pick up the
individual bits from the cassette player (see box). This bit-reading routine
returns a count in the C register that measures the length of an incoming
square-wave pulse. A count of 21 or more indicates a 0 bit value, and a
count of less than 21 indicates a 1 bit value.

Hidden Powers of the Cassette

213

214

Routine: Read Cassette Data Bit

Purpose: To read a bit from the tape cassette player
Entry Point: 6FDBh = 28,6354

Input: None

Output: When the routine returns, the C register contains a number
that measures the length of an incoming square-wave pulse. A count
of 21 or more indicates a O bit value, and a count of less than 21
indicates a 1 bit value.

BASIC Example: Not applicable

Special Comments: None

The bit-reading routine has two major parts: one part counts pulses
that go low-high-low, and the other part counts pulses that go high-low-
high. The DATAR routine uses only the first part. In this part, there are
two Joops. The first loop waits for a high on the SID line, and the second
loop measures how long the SID line stays high.

The first loop of the bit-reading routine looks for a by calling
the check routine at 729Fh =29,343d and monitors the SID line
by executing the RIM instruction. The RIM instruction leaves the value of
the SID signal line in bit 7 of the accumulator. As soon as the SID line goes
high, the routine leaves its first loop and starts the second loop.

The second loop of the bit-reading routine counts the number of times
that it loops while the SID line is still high. Each execution of the loop takes
about 29 CPU clock cycles; thus, a count of about 17 corresponds to a 1 bit,
and a count of about 35 corresponds to a 0 bit. If the count gets as high as
9256, it starts all over again with the first loop. If not, it returns with the
count, calling a routine at 7676h = 30,326d to flip the sound bit to make a
click for you to hear (see Chapter 8). If the SOUND OFF command is
currently in force, it skips this bit flip. Location FF44h = 65,348d is used to
control the SOUND ON/OFF feature during cassette operation.

After the bit-reading routine, the DATAR routine calls a routine at
7023h =28,707d to check the count and pack the bits, one at a time, nto
the D register (see box). This routine checks the count in the C register,
using the CPI instruction to compare the count against the value of 21.
This places the correct bit value into the carry. It then rotates this bit value
from the carry into the D) register via the accumulator.

Hidden Powers of the TRS-80 Model 100

Routine: Pack Cassette Data Bit
Purpose: 'Io pack serial bits from the cassette into the D register
Entry Point: 7023h =28,707d

Input: Upon entry, the C register contains the count from the bit-
reading routine, and the D register contains the partially packed
data byte,

Output: When the routine returns, the bit is placed into bit 0 of the
data byte, and the previous contents are shifted left by one position.

BASIC Example: Not applicable

Special Comments: None

The CASIN routine at 14B0h =5296d is the next higher level routine
for reading data bytes from the cassette recorder (see box). As it reads data
bytes from the cassette, it computes the checksum byte.

Routine: CASIN

Purpose: To read a data byte from the tape cassette player and
update the checksum

Entry Point: 14B0h = 5296d
Input: Upon entry, the C register contains the current checksum.

Output: When the routine returns, the data byte is in the A register,
and the updated checksum is in the C register.

BASIC Example: Not applicable

Special Comments: None

Upon entry, the CASIN routine expects the current value of the check-
sum byte in the C register. It returns with the updated checksum in the C
register and the data byte in the A register.

"The CASIN routine saves the DE, HL, and BC register pairs on the
stack. It calls the DATAR routine to read the data byte. If a is
detected, DATAR returns with the carry set, and CASIN jumps to declare
an IO error. If there was no { BREAK }, CASIN continues, adding the value
of the data byte to the current checksum and placing the result back into C.

Hidden Powers of the Cassette

215

Synchronizing Header

The routine to read the special synchronizing header is called SYNCR
and is located at 6F85h =28,549d (see box). It is designed to wait for this
special header signal.

Routine: SYNCR

Purpose: 16 read the synchronizing header from the tape cassette
player

Entry Point: 6F85h = 28,549d

Input: From the cassette player

Output: None

BASIC Example:

CAatl 28548

Special Comments: None

Routine: Start Cassette Read

Purpose: 1o turn on the tape cassette motor and wait for the end of
the synchronizing header from the cassette player

Entry Point: 1499h = 5273d
Input: From the cassette player
Output: None

BASIC Example:

CaLL 35273

Special Comments: None

The SYNCR routine is more complicated and tricky than the corre-
sponding SYNCW routine, which was used to generate the header. The
SYNCR routine consists of three loops. The first two lock into the alternat-
ing pattern of 0 and 1 bits in the body of the header, and the last loop checks
for the last byte of the header, which is 7Fh = 127d.

"The actions of turning on the cassette motor and detecting the special
header are combined in one routine, located at 1499h =5273d (see hox).
'This routine calls the CTON routine, waits for almost a second to let the
tape get up to speed, and then jumps to the SYNCR routine to look for the
header.

216 Hidden Powers of the TRS-80 Model 100

Summary

In this chapter we have examined the operation of the cassette tape
interface on the Model 100. We have seen how the cassette motor is con-
trolled through bit 3 of port E8h =232d and how the data lines to and from
the cassette are connected to the serial data lines of the 8085 CPU. We have
discussed how to control the motor circuit for other purposes than simply
controlling a cassette player/recorder. We have also studied the low-level
ROM routines for reading from and writing to the cassette player/recorder.

Hidden Powers of the Cassetie

217

218

Address 40h = 64d

Address

3407h=13,319d
3654h = 15,908d
33F2h =13,298d
9B4Ch = 11,084d
1100h=4,352d

10C8h =4,296d

10CEh=4,302d

305Ah=12,378d
313Eh = 12,606d
9FCFh= 12,2394
30A4h=192,459d
9EEFh=12,015d
9F09h = 12,041d
9F58h=12,120d
9F71h=12,145d
1984h =4,740d

1889h=6,281d

506Dh = 20,589d
506Bh = 20,587d
3501h =13,569d
352Ah = 1%,610d
35BAh = 13,754d
3645h = 13,893d
9943h = 10,563d
973Ah = 10,042d
9A07h = 10,759d
994Fh = 10,575d
995Fh = 10,591d
998Eh = 10,638d
99ABh = 10,667d
99DCh = 10,716d
99E6h = 10,7264

BASIC Function Addresses

Function

SGN
INT
ABS
FRE
INP
LPOS
POS
SOR
RND
LOG
EXP
COS
SIN
TAN
ATN
PEEK
EOF
LOC
LOF
CINT
CSNG
CDBL
FIX
LEN
STR$
VAL
ASC
CHR$
SPACE$
LEFT$
RIGHTS$
MID$

BASIC Keywords

Address 80h=128d

Keyword

END
FOR
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN

IF
RESTORE
GOSUB
RETURN
REM
STOP
WIDTH
ELSE
LINE
EDIT
ERROR
RESUME
ouT
ON
DSKO$
OPEN
CLOSE
LOAD
MERGE
FILES
SAVE
LFILES

Token Value

80h=128d
8lh=129d
82h=130d
83h=131d
84h=132d
85h=133d
86h = 134d
87h=135d
88h = 136d
89h=137d
8Ah=138d
8Bh=139d
8Ch=140d
8Dh=141d
8Eh=142d
8Fh=143d
90h = 144d
91h=145d
92h = 146d
93h=147d
94h = 148d
95h = 149d
96h = 150d
97h=151d
98h = 152d
99h = 153d
9Ah=154d
9Bh = 155d
9Ch = 156d
9Dh = 157d
9Eh=158d
9Fh=159d

219

LPRINT
DEF:
POKE
PRINT
CONT
LIST
LLIST
CLEAR
CLOAD
CSAVE
TIME$
DATES$
DAY$
COM
MDM
KEY
CLS
BEEP
SOUND
LCOPY
PSET
PRESET
MOTOR
MAX
POWER
CALL
MENU
IPL
NAME
KILL
SCREEN
NEW
TAB(
TO
USING
VARPTR
ERL
ERR
STRINGS$
INSTR
DSKIi$
INKEY$

220 Appendices

AOh=160d
Alh=161d
A2h=162d
A3h=163d
Adh=164d
A5h=165d

ABh=166d

A7h=167d

ABh=168d .

AYBh=169d
AAh=170d
ABh=171d
ACh=172d
ADh=173d
AEh=174d
AFh=175d
BOh=176d
Blh=177d
B2h=178d
B3h=179d
B4h =180d
B5h=181d
B6h=182d
B7h=183d
B8h=184d
BYh=185d
BAh=186d
BBh=187d
BCh=188d
BDh=189d
BEh=190d
BFh=191d
COh=192d
Clh=193d
C2h=194d
C3h=195d
C4h=196d
C5h=197d
C6h=198d
C7h=199d
C8h=200d
C9h=201d

CSRLIN

OFF
HIMEM
THEN
NOT
STEP

+

i
/

CAh=202d

CBh=203d

- CCh=204d

CDh=205d
CEh=206d
CFh=207d
DOh=208d
D1h=209d
D2h=210d
D3h=211d
D4h=212d
D5h=213d
D6h=214d
D7h=215d
D8h=216d
D9h=217d
DAh=218d
DBh=219d
DCh=220d
DDh=221d
DEh=222d
DFh=223d
EOh=224d
Elh=225d
E2h =226d
E3h=227d
E4h=228d
E5h=229d
E6h =230d
E7h=231d
E8h=232d
E9h=233d
EAh=234d
EBh=235d
ECh=236d
EDh=237d
EEh=238d
EFh=239d
FOh=240d
Flh=241d
F2h=242d
F3h=243d

Appendices

221

CDBL
FIX
LEN
STR$
VAL
ASC
CHR$
SPACE$
LEFT$
RIGHT#%
MID$

222 Appendices

F4h =244d

F5h=245d
Foh=246d
F7h=247d
F8h=248d
F9h =249d
FAh=250d
FBh=251d
FCh=252d
FDh=253d
FEh=254d

BASIC Command
Addresses

Address 262h =610d

Address

409Fh = 16,548d
0726h = 1,830d
4174h=16,756d
099Eh =2,462d
0CA3h=3,235d
478Bh=18,315d
0CD9h = 3,289d
09C3h=2,499d
0936h=2,358d
090Fh=2,319d
0B1Ah=2,842d
407Fh=16,511d
091Eh=2,334d
0966h = 2,406d
09A0h =2,464d
409Ah=16,538d
IDC3h=7,619d
09A0h =2,464d
0C45h=3,141d
S5EB1h=24,145d
0BOFh=2,831d
0ABOh=2,736d
110Ch =4,364d
0A2Fh=2,607d
5071h =20,593d
4CCBh=19,659d
4FK28h=20,008d

Command

END
FOR
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN

IF¥
RESTORE
GOSUB
RETURN
REM
STOP
WIDTH
ELSE
LINE
EDIT
ERROR
RESUME
ouT

ON
DSKO$
OPEN
CLOSE

223

4D70h = 19,824d LOAD

4D71h=19,825d MERGE

1F3Ah ="7,994d FILES

4DCFh=19,919d SAVE

506Fh = 20,591d LFILES . .. o
OB4Eh =2,894d LPRINT - '-
198Bh =4,747d POKE B o O o
OB56h = 2.902d PRINT ‘,‘
40DAh = 16 602d CONT 'nary p erarions
1140h=4,416d LIST

113Bh=4,411d LLIST

40F9h = 16,633d CLEAR o Address 2E2h=738d

gg gg; = g’g;gg gis‘g?é) Priority Number Operation
19ABh=6,571d TIME$ T 79h=121d +

19BDh =6,589d DATES$ 79h=121d -
19F1h=6,641d DAY$ [7Ch=124d *

1A9Eh =6,814d COM i B 7Ch=124d /

1A9Eh =6,814d MDM e 7Fh=127d)

1BB8h =7,096d - KEY E 50h=80d AND
49%1h=16,945d CLS 46h=70d OR
4999h = 16,937d BEEP n 3Ch=60d XOR
1DCHh="7,621d SOUND 'y 32h=50d EQV
1E5Eh="7,774d LCOPY . 28h =40d IMP
1C57h =7,265d PSET &l 7Ah=122d MOD
1C66h =7,270d PRESET il 7Bh=123d \

IDECh =7,660d MOTOR E

7FOBh = 32,5254 MAX |

1419h=5,145d POWER :

1DFAh =7,674d CALL

5797h =22 425d MENU

1A78h=6,776d IPL

2037h=28,247d NAME '

1¥F91h=8,081d KILL

1E2%h=7,714d SCREEN

90FEh = 8,446d NEW

224 Appendices 225

226

Some Numerical
Conversion Routines

Address 2EEh =750d

Address Operation

35BAh=13,754d CDBL (Convert to Double Precision)
0000h = Od nione

3561h=13,569d CINT (Convert to Integer)

35D9%h =13,785d check for integer type
352Ah=13,610d CSNG (Convert to Single Precision)

Binary Operations for
Double Precision

Address 2F8h =760d

Address Operation
2B78h=11,1284 +
2B69h=11,113d -
2CFFh=11,518d *
2DC7h=11,719d /

3DBEh=15,758d
34¥Ah=15,562d comparisons

Binary Operations for
Single Precision

Address 304h=772d

Address Operation
37F4h=14,324d +
37FDh=14,333d -
3803h=14,339d *

380Eh = 14,350d /
3D7Fh=15,743d)
3498h=13,464d comparisons

Binary Operations
for Integers

Address 310h=784d

Address Operation
3704h = 14,084d +

36F8h = 14,072d -
3725h=14,117d *

OFODh =3,853d /
8DF7h=15,863d)

34C2h = 13,506d comparisons

227

228

Error Codes

Address 31Ch=796d

Symbol

NF
SN
RG
oD
FC
oV
OM
UL
BS
Db
0
ID
™
(N
LS
ST
CN
10
NR
Rw
UE
MO
IE
BN
F¥
AQ
EF
NM
DS
F1.
CF

Code

L 00 ~T O T i L0 B e

|43 B3 S) S 2o T A B S B R Tl e T e T T s T Ty s
N =t DN = D0 00~ Ut G0N — D

53
54
55
56
57
58

Explanation

NEXT WITHOUT FOR
SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

OUT OF MEMORY
UNDEFINED LINE

BAD SUBSCRIPT

DOUBLE DIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

OUT OF STRING SPACE
STRING TOO LONG
STRING FORMULA TOO COMPLEX
CAN'T CONTINUE

ERROR

NO RESUME

RESUME WITHOUT ERROR
UNDEFINED ERROR
MISSING OPERAND
UNDETFINED ERROR

BAD FILE NUMBER

FILE NOT FOUND
ALREADY OPEN

INPUT PAST END OF FILE
BAD FILE NAME

DIRECT STATEMENT IN FILE
UNDEFINED ERROR

FILE NOT OPEN

BASIC Error Routines

Address

446h = 1,094d
449h=1,097d
44Ch = 1,100d
44Fh=1,103d
452h=1,106d
455h=1,109d
458h=1,112d
45Bh=1,115d
504Eh =20,558d
5051h=20,561d
5054h=20,664d
5057h=20,567d
505Ah=20,570d
505Dh=20,573d
5060h =20,576d
5063h =20,579d
5066h = 20,582d

Code

02h=2d

0Bh=11d
0l1h=1d

0Ah=10d
14h=20d
06h= 6d

16h=22d
0Dh=13d
37h=55d
35h=53d
38h =56d
34h=52d
3Ah=58d
33h=51d
32h=50d
36h=5h4d
39h=57d

Explanation

SYNTAX ERROR

DIVISION BY 0

NEXT WITHOUT FOR
DOUBLE DIM ARRAY
RESUME WITHOUT ERROR
OVERFLOW

MISSING OPERAND

TYPE MISMATCH

BAD FILE NAME

ALREADY OPEN

DIRECT STATEMENT IN FILE
FILE NOT FOUND

FILE NOT OPEN

BAD FILE NUMBER
UNDEFINED ERROR
INPUT PAST END OF FILE
UNDEFINED ERROR

229

230

Control Characters

for the Model 100

Address 438Ah=17,290d

ASCII Code

07h=7d
08h=_8d
09h =9d
0Ah=10d
0Bh=11d
0Ch=12d
0Dh=13d
1Bh=27d

Address of Routine

7662h = 30,506d
4461h=17,505d
4480h = 17,536d
4494h = 17,556d
44A8h=17,576d
4548h=17,736d
44AAh=17,578d
43B2h=17,330d

Function

BELIL
BACKSPACE
TAB

LF

HOME

FF

CR

ESC

Routines for Escape
Sequences

Address 43B8h=17,336d

ASCII code

6Ah=106d
45h = 69d
4Bh= 75d

4Ah="74d

6Ch=108d
4Ch="76d

4Dh="77d
59h=289d

41h=65d
42h = 66d
43h=67d
44h = 68d
48h="72d
70h=112d

71lh=113d

Character
after

ESC
Symbol

—

E
K

LS——

e
.

TIDOmE <2

)

Address of Routine

4548h=17,736d
4548h=17,736d
4537h=17,719d

454FEh =17,742d

4535h=17,717d
44EAh=17,642d

44C4h = 17,604d
43AFh=17,327d

4469h=17,513d
446Eh=17,518d
4453h=17,491d
445Ch = 17,500d
44A8h=17,576d
4431h=17,457d

4432h = 17,458d

Function

ERASE SCREEN
ERASE SCREEN
ERASE TO END OF
LINE

CLEARTO END OF
SCREEN

ERASE LINE
INSERT BLANK
LINE

DELETE LINE
DIRECT CURSOR
ADDRESSING
CURSOR UP
CURSOR DOWN
CURSOR RIGHT
CURSOR LEFT
HOME

SET REVERSE
CHAR

TURN OIF
REVERSE CHAR

23

50h=80d
51h=81d

54h=84d
55h = 85d

56h=86d

57h=87d
58h=88d

232 Appendices

K< 8 O

44AFh=17,583d
44BAh=17,594d

4439h =17,465d
4437h=17,463d

443Fh=17,471d
4440h=17,472d
444Ah=17,482d

TURN ON CURSOR
TURN OFF '
CURSOR .
SET SYSTEM LINE
RESET SYSTEM
LINE

LOCK DISPLAY
UNLOCK DISPLAY

Special Screen Routines
for the Model 100

Address

20h=32d

4222h=16,930d
4229h=16,937d
422Dh=16,941d
4231h=16,945d
4235h=16,949d
423Ah=16,954d
423Fh = 16,959d
4244h=16,964d
4249h = 16,969d
424Fh=16,974d
4253h=16,979d
4258h=16,984d
425Dh=16,989d
4262h=16,994d
4269h=17,001d
426Eh = 17,006d
4270h=17,008d
4277h=17,015d

427Ch=17,020d

428Ah = 17,034d
42A5h=17,061d

Entry Condition

A has ASCII code
None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

A has ESC code
None

H = column (1-40)

L. = row (1-8)
None

H1. = address of
function table

Function

Print a character
Print CR/LF

Beep

Home cursor

Clear the screen
Lock system line
Unlock system line
Disable scrolling
Enable scrolling
Turn on cursor

Tarn off cursor
Delete line at cursor
Insert blank line
Erase to end of line
Send ESC X

Set reverse character
"Turn off reverse char
Send escape sequence
Send cursor to lower left
corner of screen

Set cursor position

FErase label line
Set and display function
table

233

25 0004h - 2Ch= 44d

_ : 26 0008h - 00h = 0d
e 27 0008h 06h= 6d
28 0008h 0Ch= 12d
29 0008h 12h= 18d
LCD Data for Character o oo
- 31 0008h 1Eh= 30d
ol T 32 0008h 24h= 36d
P 0SS "“ ons 33 0008h 9Ah= 49d
ey 34 0008h 30h = 48d
e 35 0010h 04h = 4d
— n 36 0010h 0Ah= 10d
Address 7551h=30,033d - o 00100 b e
N 38 0010h 16h= 22d
Column Send toports BOh=185d Send to port FEh=254d s 39 0010h 1Ch= 28d
and BAh= 186d 40 0010h 2%h = 34d
UPPER HALF OF DISPLAY: LOWER HALF OF DISPLAY:
1 0001h 00h= 0d . 1 0020h 00h= 0d
2 0001h 06h= 6d 2 0020h 06h= 6d
3 0001h 0Ch= 12d 3 0020h 0Ch= 12d
4 0001h 12h= 18d 4 0020h 12h= 18d
5 0001h 18h= 24d 5 0020h 18h= 24d
6 0001h 1Eh= 30d 6 0020h 1Eh= 30d
7 0001h 24h = %6d 7 0020h 24h= 36d
8 0001h 2Ah= 42d 8 0020h 2Ah= 42d
9 0001h 30h= 48d 9 0020h 30h= 48d
10 0002h 04h= 4d . 10 0040h 04h= 4d
11 0002h 0Ah= 10d 11 0040h 0Ah= 10d
12 0002h 10h= 16d 12 0040h 10h= 16d
13 0002h 16h= 22d 13 0040h 16h= 22d
14 0002h ICh= 28d N 14 0040h ICh= 28d
15 0002h 22h = 34d o 15 0040h 22h= 34d
16 0002h 98h = 40d L 16 0040h 28h = 40d
17 0002h 9FEh = 46d 17 0040h 9Eh = 46d
18 0004h 02h= 2d 18 0080h 02h= 2d
19 0004h 08h = 8d 19 0080h 08h = 8d
20 0004h OEh= 14d 20 0080h 0Eh= 14d
21 0004h 14h= 20d E 21 ()080h 14h= 20d
99 0004h 1Ah= 26d £ 99 0080h 1Ah= 26d
23 0004h 20h= 32d 23 0080h 20h= 32d
94 0004h 26h= 38d 94 0080h 26h = 38d

234 Appendices 235

25 0080h
26 0100h
27 0100h
28 0100h
29 0100h
30 0100h
51 0100h
32 0100h
33 0100h
34 0100h
35 0200h
86 0200h
87 0200h
38 0200h
89 0200h
40 0200h
FINISHING PATTERN:
03FFh

236 Appendices

2Ch= 44d
00h= 0d

06h= 6d

0Ch= 12d
12h= 18d
18h= 24d
lEh= 30d
24h= 36d
2Ah=42d
30h= 48d
04h= 4d

0Ah= 10d
10h= 16d
16h= 22d
ICh= 28d
22h= 34d

Olh=1d

ASCII Tables for
Regular Keys

Lowercase

7BF1h=31,729d

7Ah=122d 7
78h=120d x
63h=94d ¢
76h=118d v
62h= 98db
6Eh=110dn
6Dh = 109d m
6Ch=108d!
61h=97da
73h=115ds
64h=100d d
66h=102d {
67h=103d g
68h=104d h
6Ah=106d j
6Bh=107d k
71h=113d g
77h=119d w
66h=101d e
72h=1l4dr
74h=116dt
79h=121dy
7hh=117d u
69h=105d i
6F¥h=111do
70h=112d p
5Bh= 91d |
3Bh= 59d;
27h= 39d°

Uppercase
7C1Dh=31,773d

5Ah = 90d Z
58h= 88d X
43h= 67d C
56h= 86d %
42h = 66d B
4Eh= 78d N
4Dh= 77d M
4Ch= 76d L
41h= 65d A
53h= 83d S
44h= 68d D
46h= 70d F
47h=71d G
48h= 72d H
4Ah= 74d {SHIFT)]
4Bh= 75d K
51h= 81d (SHIFT)Q
57h= 87d w
45h = 69d F
52h= 82d R
54h= 84d T
59h = 89d Y
55h= 85d U
49h = 73d I
4Fh= 79d O
50h= 80d P
5Dh= 93d (SHIFT)]
3Ah= 58d :

22h= 34d «

237

2Ch= 44d,
2FEh= 46d .
2Fh= 474/
31h=49d 1
32h= 50d 2
33h= 51d 3
34h= 52d 4
35h= 53d 5
36h= 54d 6
37h=55d7
38h= 56d 8
39h= 57d 9
30h= 48d 0
2Dh= 45d -
3Dh= 61d =

Unshifted GRPH
7C49h=31,817d

00h= 0d (GRPH) z

83h=131d (GRPH) x
84h=132d (GRPH) ¢
00h= 0d (GRPH } v

95h=149d (GRPH) b
96h = 150d {GRPH) n
81h=129d (GRPH) m
9Ah=154d (GRPH) |
85h=133d (GRPH) a
8Bh=139d (GRPH) s
00h= 0d (GRPH) d

82h=130d (GRPH) f
00h= 0d (GRPH) g

86h=134d (GRPH) h
00h= 0d (GRPH) j

9Bh=155d (GRPH) k
93h=147d (GRPH) q
94h=148d (GRPH) w
8Fh=143d (GRPH) e
89h=137d (GRPH) 1
87h=135d (GRPH) t
90h= 144d (GRPH) y
91h=145d (GRPH) u

238 Appendices

3Ch= 60d (SHIFT) <
3Eh = 62d (SHIFT) >
8Fh = 63d (SHIFT) ?
21h= 33d (SHIFT) !
40h = 64d (SHIFT) @
28h= 35d (SHIFT) #
24h = 36d (SHIFT) $
25h = 37d (SHIFT) %
5Eh = 94d (SHIFT) *
26h = 38d (SHIFT) &
2Ah = 42d (SHIFT) *
28h = 40d ((SHIFT) (
29h = 41d (SHIFT))

5Fh = 95d (SHIFT) _
9Bh= 43d +

SHIFI GRPH
7C75h=31,861d

EOh =224d (SHIFT) (GRPH) Z
EFh =239d (SHIFT) (GRPH) X
FFh=255d (SHIFT) (GRPH)} C
00h = 0d (SHIFT) (GRPH) V
00h= 0d (SHIFT) (GRPH) B
00h = 0d (SHIFT) (GRPH) N
F6h = 246d (SHIFT) (GRPH) M
FOh = 249d ((SHIFT } (GRPH) L
EBh=235d (SHIFT) (GRPH) A
ECh =236d (SHIFT) (GRPH } S
EDh =237d (SHIFT) (GRPH) D
EEh=238d (SHIFT) (GRPH) F
FDh =253d (SHIFT) (GRPH) G
FBh=251d (SHIFT) (GRPH) H
Fah =244d (SHIFT) (GRPH)) |
FAh=250d (SHIFT) (GRPH) K
E7h=231d (SHIFT) (GRPH) Q
E8h=232d (SHIFT) (GRPH) W
E9h =233d (SHIFT) (GRPH) E
EAh=234d (SHIFT) (GRPH } R
FCh=252d (SHIFT) (GRPH) T
FEh =254d (SHIFT) (GRPH) Y
FOh =240d U

8Eh=142d (GRPH) i
98h=152d (GRPH) 0
80h=128d (GRPH) p
60h= 96d (GRPH) [
92h = 146d ((GRPH } ;
8Ch = 140d (GRPH)’
99h =153d (GRPH),
97h=151d (GRPH).
8Ah=138d (GRPH)/
88h=136d (GRPH) 1
9Ch=156d ((GRPH) 2
9Dh=157d (GRPH) 3
9Eh=158d (GRPH) 4
9Fh=159d {{GRPH) 5
B4h=180d (GRPH } 6
BOh=176d (GRPH) 7
A3h=163d (GRPH) 8
7Bh=123d (GRPH) 9
7Dh=125d (GRPH } 0
5Ch= 92d (GRPH) —
8Dh=141d (GRPH) =

Unshifted CODE
7CA1h=31,905d

CEh =206d ((CODE) z
Alh=161d (CODE) x
A2h=162d (CODE) ¢
BDh=189d ((CODE) v
00h= 0d (CODE) b

CDh=205d (CODE) n
00h = 0d m

CAh=202d (CODE) 1
B6h=182d (CODE }a
A9h = 169d (CODE J s
BBh=187d ((CODE) d
00h= 0d (CODE) f

00h= 0d (CODE) g

00h = 0d (CODE) h

CBh=203d (CODE) j
C9h=201d (CODE) k
C8h=200d ((CODE) q

F3h=243d (SHIFT) (GRPH) I
F2h =242d (SHIFT) (GRPH) O
Flh=241d (SHIFT) (GRPH) P
7Eh = 126d (SHIF) (GRPH) |
F5h=245d ((SHIFT) (GRPH) :
00h= 0d (SHIFT) (GRPH) “
F8h=248d (SHIFT) (GRPH) <
F7h=247d (SHIFT) (GRPH) >
00h = 0d (SHIFT) (GRPH) ?
Elh=225d (SHIFT) (GRPH) !
E2h=226d (SHIFT) (GRPH) @
E3h=227d { SHIFT) (GRPH) #
E4h =228d (SHIFT) (GRPH) $
E5h =229d (SHIFT) (GRPH) %
E6h =230d (SHIFT) (GRPH) *
00h = 0d (SHIFT) (GRPH } &
00h = Od ('SHIFT) (GRPH) *
00h = 0d (SHIFT) (GRPH) (
00h = 0d (SHIET) (GRPH))
7Ch=124d (SHIFT) (GRPH) _
00h = 0d (SHIFT) +

SHIFT CODE
7CCDh=31,949d

00h= 0d (SHIFT) (CODE) Z
DFh =223d { SHIFT) (CODE) X
ABh=171d (SHIFT) (CODE) C
DEh=222d (SHIFT) (CODE) V
00h= 0d (SHIFT) (CODE } B
00h= 0d (SHIFT) (CODE) N
ABh = 165d (SHIFT) (CODE) M
DAh =218d (SHIFT) (CODE) L.
B1h=177d (SHIFT) (CODE) A
BY9h = 185d {SHIFT) (CODE) S
D7h=215d (SHIFT) (CODE) D
BFh=191d (SHIFT) (CODE) F
00h = 0d (SHIFT) (CODE) G
00h = 0cl (SHIFT) (CODE) H
DBh =219d (SHIFT) (CODE] |

DY9h=217d (SHIFT){ CODE] K
D8h=216d (SHIFT) {CODE) Q

Appendices

239

00h= 0d w
C6h = 198d e
00h = 0d r
00h= 0d (CODE)t
CCh=204d y
B8h=184d u
C7h=199d (CODE) i
B7h=183d 0
ACh=172d p
B5h=181d (CODE J[
ADh=173d ;
AOh = 160d ’
BCh=188d :
CFh=207d :
AEh=174d (CODE)/
COh=192d 1
00h = 0d 2
Clh=193d 3
00h= 0d 4
00h= 0d 5
00h= 0d 6
C4h = 196d 7
C2h=194d 8
C3h=195d 9
AFh=175d 0
Chh=197d —
BEh = 190d =

240 Appendices

00h= 0d w
D6h=214d E
AAh=170d (SHIFT) (CODE) R
BAh=186d (SHIFT) (CODE) T
DCh=220d Y
B3h=179d U
Dbh=213d I
B2h=178d)
00h = 0d P
00h = 0d (CODE) |
00h = 0d :
A4h = 164d (SHIFT) (CODE)
DDh=221d {SHIFT) (CODE) <
00h= 0d p
00h= 0d ?
DOh =208d (CODE) !
00h= 0d (SHIFT } { CODE) @
D1h=209d #
00h = Od (SHIFT }{ CODE) §
00h= 0d %
00h = 0d :
D4h = 212d (SHIFT) (CODE) &
D2h=210d (SHIFT) (CODE) *
D3h=211d ((CODE) (
A6h = 166d (SHIFT) (CODE))
A7h=167d (SHIFT) (CODE) _
A8h = 168d (SHIFT) (CODE) +

ASCII Table for NUM Key

Memory Address

7CF9%h=31,993d

7CFBH =31,995d
7CFDh=31,997d
7CFFh=31,999d

7DD1h=32,001d
7DO3h = 32,003d
7DO5h = 32,005d

Regular Key

6Dh=109d
6Ah=106d
6Bh=107d
6Ch =108d
75h=117d
69h=105d
6Fh=111d

Byte

NUM Pad Key

30h= 48d
31h= 49d
32h= 50d
33h= 51d
34h= 52d
35h= H3d
36h= 54d

Byte

OOt R QO N e D

241

242

ASCII Tables for
Special Keys

87h=135d

7DO7h=32,007d

0lh= 1d
06h= 6d
14h= 20d
02h= 2d
20h = %2d
7Fh=127d
09h = 9d
IBh= 27d £SC
8Bh=139d
88h =136d
8Ah=13%8d
O0Dh= 13d ENTER
80h=128d
81h=129d
82h=130d
83h=131d
84h = 1524
85h=133d
&6h = 134d

7D1Bh=32,027d

1Dh= 29d
1Ch= 28d
1Eh = 30d
1IFh= 31d SHIFT
20h= 32d
08h= 8d SHIFT
09h= 9d
IBh= 27d SHIFT)(ESC
8Bh=139d
88h = 136d
89h=137d
O0Dh= 13d SHIFT)(ENTER
80h=128d
81h=129d
82h=130d
83h=131d SHIFT
84h = 132d
85h=133d
86h = 134d
87h = 135d SHIFT

6402 UART, 29, 34

BO85 CPU, 23, 26, 98,

BOBS microprocessor. 99

8085 CPU, 19 %

8155 PIO, 19, 90, 99,
85, 178, 196,

ADDRSS, 4, 38,40, 72, 77-7
ALE, 26 L RENORERCIE
ASCIE code, 10877000 0
ASCH #fleis), 72, 74, 79, 210
Accumulator, 23, 67
Address, 7, 16, 24

bus, 24

finder, 60, 62

lines, 26

selection, 27

tables, 51
Addressing space(s), 27, 28
Area filling, 100
Arithmetic logic unit, 22, 23
Assembly language, 7, 8
Assembly-language mnemonics, 22
Automatic power shutoff, 115
Automatic power-off, 145-46

BASIC, 1, 2, 17, 38, 52, 70, 72, 74
commands, 51
mterpreter, 2, 40, 51, 57
interrupt, 153
keywords, 51
program files, 74

BEEP, 76, 196, 198, 199

BREAK, 191

BRKCHK, 66-67

Background sk, 50, 106, 111, 115,

121, 142-47, 153, 156-65
Bank, 88, 90
Bank selector, 89-90
Bar code reader, 20, 4¢
Bar code reader interface, 4, 41
Binary operations, 52, 69
Block mansfer, 137
Boxes, 91
Box-hil, 101, 102
Buses, 19
Bus interfacing, 22, 24
Bus system, 24
Byte plotting, 112-158

CALL, 17
CASIN, 215
CLK, 26
CLSCOM, 180
CMOs, 22, 3]

[COM:STOP 174
ONN: 185
CPU; 20,22, 24
- CPU registers, 22
CSOUT, 210
CTOFE 207

CTON, 212, 216, 206

CTS, 174

Cassette recorder, 33, 208

Chip
enable, 27
select, 27

Circular buffer, 186-89

Clock, 22, 88
command, 121
speed, 22

Cold start, 80

Control, 24, 3, 33
bus, 28
characters, 107
line, 30

Cursor, 40, 71, 78
addressing, 107
blink, 9F, 113-14
control, 76

DATAW, 208-9, 211
DATES, 198
DAY$, 131, 136
DEFDBL, 62
DEFINT, 62
DEFSNG, 62
DI instruction, 49
DIAL, i8]
DISC, 183
DSR, 174
DR, 174
Data, 24

bus, 24

lines, 26

type, 45
Decoding, 28-30

Dialing, 180, 181, 184

Disasscrbler, 7, 8

Disk drive/video interface, 20

Doubie precision, 67
format, 52
numbers, 63, 64

Editing, 78

Entry point(s), 15, 16, 38, 41

Error, 54
codes, 54

COMON, 174 "0

CPU instructionds), 8, 14

designators, 52
entry points, 54
routine, 54

FOR statement, 38
File{s), 2
directory, 2, 72-74
saving and loading, 2
system, 2

type, 72, 74

H, 14
Hook(s), 47, 104
table, 104
Horizontal LCD drivers, 85-88

IN, 29
INITIO, 80, 81
INLIN, 35
INP, 53
INPUT, 88
INT, 51
INTA, 26
INTR, 26
INZCOM, 177-80
O/M, 26
Instruction
register, 24
decoding, 22, 24
Interrupt(s), 22, 26, 32, 134
7.5, 96
OFF, 138
ON, 138
STOP, 139
control, 22
counter, 142
routines, 41
status byte, 149

KEY OFF, £53-56

KEY ON, 1563-56

KEY STOP, 153-56
KEYBOARD MATRIX, 152
KEYX, 167-68

KYREAD, 165-66

Keyboard, 4, 22, 31, 35, 52, 55, 57,

88, 148-68

input, 153

matrix, 149

scanning, management, 157

LCD RAM, 108-10)

LCD, 15, 16, 22, 25, 8F, 72, 153
screen, 52

LDA, 29

243

LET, 58-69
command, 58
LLHLD, 29
LINE, 10¢
Liquid crystal display, 15, 34, 82-114

wPD 1950, 20
wPD 1990 board, 19
MAKTXT, 79
MDM OFF, 174
MM ON, 174
MDM STOP, 174
MENU, 38, 40, 71-77, 79
MODEM, 25
MOV, 24
MUSIC, 201
Memory, 26, 28
pawer switch, 25
space, 1
Microprocessor chip, 24
Modem, 3, 4, 174, 181
Motor control, 203, 205

ON COM, 142
ON COM GOSUB, 174
ON KEY, 142
ON KEY GOSUB, 15%
ON MDM, 142
ON MDM GOSUB, 174
ON TIME$, 115, 139, 140
ON TIMES$...GOSUB, 136, 137
ON TIME$ Interrupt, 146
ON.LINTERRUPT/GOSUB, 154
OUE 15, 29, 53
Ok, 54
Oueput, 16, 31
ports, 15

IPC, 23
PEEK, 5, 51
PIO), 31
PIC bus, 22
PLOT, 95-99, 10%
PRESET, 88, 95-94, 95
PSET, 88, 93, 95
Parallel, 22, 170
170, 31
wransfer, 116, 127
Plane of vibration, 83
Points, 91
Pomnter(s), 2, 28
Port A, 31
Port B, 3¢
Port C, 31, 33
Port decoder, 3t
Printer, 19, 22, 31
interface, 4, 35
Priority, 66
Program counter, 23

244 index

Protection code, 72

RAM RST, 26

RCVX, 189, 190

RD, 26

REMOTE, 206-7

RESET, 26, 41

RIM, 22, 24, 204

ROM, 1, 16, 20, 26, 38, 41, 52
file(s), 2, 72, 74

RS-232, 25, 169

RS8-232C, 171, 174, 181
communications, 69, 70
serial port, 3, 4

RST, 41

RST 0, 41, 42

RST 1, 49

RST 2, 48, 69

RST 3,43, 44

RS 4, 44, 103

R8T 5, 45

RST 5.5, 24, 49

RST 6, 46

RST 6.5, 24, 50

R8T 7,47, 104

RST 7.5, 24, 50

RV232C, 190-91

Read
cassette data, 214
LCD bytes, 98
time and date, 125-27

Real time clock, 25, 81, 53, 34, 41,
57, 115-47

54, 26

SI, 26

SCHDL, 38

SCHEDL, 4, 40, 77-78

sD232C, 191, 192

SENDCQ, 194

SENDCS, 195

SHLD, 29

SID, 204, 214

SIM, 22, 24, 144-45, 204, 209

SNDCOM, 191-93

S0D, 204, 209

SOUND, 196, 201

SOUND OFF, 214

STA, 29

SYNCR, 216

SYNCW, 211, 212

Serial, 170-74
interrupt service routine, 186
output data (SOD), 24
communications, 41, 50, 71, 169
contral, 22, 24
transter, 116, 127
transmission, 193

Set date, 135

Set time, 133
Set the clock, 121
Shilting operations, 23
Sign, 46, 64
Sound, 196-207

delay, 200
Special comments, 17
Status, 26, 31, 33
Stopwatch program, 144
String, 63, 64
Strobe(s), 33, 34, 36, 127-28
Synchronizing header, 211, 212, 216

‘FC55188F-25 chips, 27
TELCOM, 3, 4, 38, 40, 69, 70, 72, 74
TERM, 70, 71
TEXT, 3, 38, 40, 72, 74, 78
TIMEY, 122, 124, 139, 133
TIMES OFE 136, 138, 140
TIMES ON, 136, 138, 140
TIME$ STOP, 136, 158, 140
TRAP, 24, 49
Tape cassette interface, 4, 240, 203-17
Timer, 22, 31, 392, 33
Timing, 26
pulse, 118
signal, 24
Timing and control, 22-94
Token(s), 51
Tokenize, 56
Trigger interrupt, 141

UART(s}, 172, 174-176, 185, 196
UNPLOT, 95-99, 101

Updating the year, 147
Uploading, 17

User-defined functions, 2

VARPTR, 61
VB, 25
VDD, 25
VEE, 25
Vartable(s), 2, 62
name, 61
type, 61-64
Vertical LCD drivers, 86-87

WR, 26
Write cassette data, 209
Write LCD bytes, 94

Y0, 26, 29, 30
Y1, 30

Y2, 30

Y3, 31

Y7, 29, 30

({0452}
Other PLUME/ WAITE books on the TRS-80% Model 100:

3 Introducing the TRS-80° Madel 100, by Diane Burns and S. Venit. This book, intended
for newcomers to the Model 100, offers simple step-by-step explanations of how to set up
your Model 100 and how to use ifs built-in programs: TEXT, ADDRSS, SCHEDL, TELCOM,
and BASIC. Specific instructions are given for connecting the Model 100 to the cassette
recorder, other computers, the telephone lines, the optional disk drive/video interface, and
the optional bar code reader. [255740—3%15.95)

[Mastering BASIC on the TRS-80° Model 100, by Bernd Enders. An exceptionally easy-
to-follow intreduction fo the built-in programming language on the Madel 100. Also serves
as a comprehensive reference guide for the advanced user. Covers all Model 100 BASIC
features including graphics, sound, and file-handling. With this book and the Model 100
you can fearn BASIC anywhere! (255759—%19.95)

[] Guames and Utilities for the TRS-80® Model 100, by Ron Karr, Steven Olsen, and
Robert Lafore. A collection of powerful programs to enhance your Model 100. Enjoy fast-
paced, exciting card gomes, arcade games, music, art, and learning games. Help yourself
to practical utilities that let you count words in a text file, furn your Model 100 into a scientific
calculator, show file sizes, and generally increase your Model 100’ usefulness, and your
own grasp of programming. (XXXXXX — $XXXX)

[] Practical Finance on the TR5-80% Model 100, by S. Venit and Diane Burns. The perfect
book for anyone using the Model 100 in business: investors, real estate brokers, managers.
Contains short but powerful programs to perform production planning, and access financial
and other information from CompuServe® and the Dow Jones News/Retrieval® service.

(255767—%15.95)

All prices higher in Canada.

To order, use the convenient coupon on the next page.

