Hidden Powers of the
Liquid Crystal Display

Ee Liquid Crystal Display (LCD) is the main output device for the
Model 100. As such, it provides a good starting point for understanding the
operation of the Model 100. The LCD also represents a new approach in
display technology, an approach that has much promise because it requires
less power and space than the older video technology. 1t is one of the major
reasons why the Model 100 is truly portable.

We will start our exploration of the LCD with a general description of
liquid crystal displays and then sec in detail how the built-in display of the
Model 100 works. We will see how to program the display screen, both
directly and by calling various levels of subroutines in the computer’s ROM.

How Liquid Crystal Displays Work

82

In contrast to the more traditional video CRT (cathode ray tube), a
liquid crystal display does not generate its own light. Instead, it selectively
blocks light that comes from the outside.

I you look closely at the LCD of your Model 100, you will see that it
consists of a two-dimensional array of tiny squares. These are the picture
elements (pixels) of the display (see Figure 4-1). The horizontal pixel posi-
tions are numbered from 0 to 239 from left to right, and the vertical
positions are labeled from 0 to 63 from top to bottom.

Fach tiny square 1s a sandwich in which the “bread” consists of polarized
filter material and the “filling” is made of liquid crystal. Glass plates sepa-
rate the liquid crystal from the polarizing filters in this sandwich (see Figure
4-2). '

Each pixel can be individually lightened or darkened by applying a
voltage to i1t that affects its transparency. A layer of reflective material
behind the entire display helps bounce the light through those pixels of the
display that are transparent.

To understand how the pixels can be made more or less transparent,
you must understand a fittle about the theory of light. Light is electromag-
netic radiation; that is, it consists of combinations of electrical and magnetic
waves.

Ordinary light consists of a hodgepodge of individual light waves. Each
individual light wave is a precisely balanced pair of electrical and magnetic
waves. 'These component waves both travel in the same direction, the direc-
tion of motion of the wave; they vibrate at the same frequency, the frequency
of the wave; but their directions of vibration are perpendicular to each
other and to the direction ol the motion of the wave (see Figure 4-3). The
two directions of vibration determine an oriented plane called the “plane of
vibration”. This gives an orientation to each individual light wave.

A polarizing filter polarizes light by allowing only those light waves to
pass through it that are oriented in a certain way. That is, it blocks light

Figure 4-1. Pixels of LCD display

Hidden Powers of the Liquid Crystal Display 83

waves whose electrical (or magnetic) components do not line up in a certain
direction. Light that has passed through such a filter is said to be "pola-
rized”, because the orientations of its individual light waves are closely
aligned with each other.

“When two polarizing filters are placed together face to face, they will let
through light if their polarizations are aligned but will block most of the
light if their polarizations are twisted with respect to each other.

Liquid crystal twists the orientation of the light that passes through it.
The amount of the twist depends upon the voltage applied to the crystal.
When the crystal is sandwiched between two polarizing filters, this twisting,
and hence the voltage applied to the liquid crystal, is translated into the
degree of transparency of the sandwich.

Light comes into an LCD display from the outside, goes through the
sandwich, is reflected from the mirrorlike surface behind the display, and
comes back through the display to your eyes. The amount of light that
makes its way through this arrangement depends on your viewing angle as
well as the voltage that is applied to the liquid crystal. The adjustment wheel
on the right side of your Model 100 allows you to select the best voltage for
optimum visibility from your particular viewing angle.

Figure 4-2. Pixel sandwich

84 Hidden Powers of the TRS-80 Model 100

Each pixel of the display can be individually controlled with its own
voltage. On the Model 100, a display element is transparent when little
voltage is applied and becomes opaque as more voltage is applied. On some
systems direct current is used, but on the Maodel 100 alternating current is
used to extend the life of the display.

‘The Model 100’ display screen consists of a 240 by 64 array of pixels.
Ten chips called “LCD horizontal drivers” directly control ten different
regions of the display. Each horizontal driver has 50 lines that can control
50 horizontal positions of the display. The drivers come in pairs, one to
control the upper 32 rows and one to control the lower 32 rows of each
horizontal section of the display (see Figure 4-4). You can see from this
figure that four pairs of horizontal LCD drivers control the first 200 hori-
zontal positions (in 50-position sections) and one pair controls the last 40
positions. These last two horizontal drivers have only 40 of their 50 outputs
connected to the display.

Fach horizontal LCD driver stores a total of 1600 bits, one for each of
the pixels in a 50 by 32 section of the display {(except of course for the last
pair of drivers, which don’t map to a complete 50 by 32 section). The 1600

Figure 4-3. Components of a light wave

Hidden Powers of the Liquid Crystal Display 85

bits are stored in four banks of 50 bytes. Each bank corresponds to a 50 by In contrast to the horizontal drivers, the vertical drivers do not store any
8 strip of the display. Bank 0 corresponds to the top eight rows of pixels, information; they merely maintain a constant scanning pattern.

bank 1 corresponds to the next eight rows, bank 2 corresponds to the next
eight rows, and the last eight rows correspond to bank 3. Within each bank,
each byte corresponds to a 1 by 8 column of pixels (see Figure 4-5).

The horizontal LCD drivers continually refresh the display on their
particular sections of the screen. Each output line to the display refreshes a
1 by 32 column of pixels. The information is sent through these lines
serially, first the top row, then the second row, and so on, over and over
again, creating a top-to-bottom scanning pattern.

A pair of vertical LCD drivers controls the rows of the display, enabling
and disabling them in synchronization with the above-mentioned scanning
pattern. One vertical driver controls the upper 32 rows of pixels, and the
other controls the lower 32 rows. The two vertical drivers scan at the same
rate and time through their own parts of the display. When the horizontal
drivers produce the information for their first row, the vertical drivers enable
only their first row, and so on (see figure 4-6).

The scanning rate is one row about every 446 microseconds. 'The entire
32 rows are scanned about every 14.3 milliseconds, or 70 times a second.
This is slightly faster than a CRT display is normally scanned.

Figure 4-5. Banks and bytes in a horizontal LCD driver

LCD LCD 1Ch LCoD Lt

horizontet driver horizonlal driver horizontal driver horizortal driver horizontal driver

TOTTATTRATATL . TETTTOECIAY: . TTCCTTRIIOA. AT EEAT . e

Vertical
LCD

driver Upper four rows
of characters

Screen

Lower four rows
of characters

(ITTTETINITAOY THCEERTEINAA, RIS

LCD Lo LCD

horizanta! driver horizontal driver herizontal driver horizontal driver

Figure 4-4. Horizontal LCD drivers Figure 4-6. Vertical LCD drivers

86 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the Liquid Crystal Display

You can program the LCD screen by sending bytes to the horizontal
LCD driver chips. These bytes can also be read back at a later time.

You can separately address each individual pixel in the entire display. To
do this, you must determine the pixel’s LCD driver, its “bank” within the
LCD driver, its horizontal byte position within the bank, and its position
within that byte. The Model 100 figures this out each time you ask it to plot
a point with the PSET or PRESET command, and it makes a similar com-
putation each time it puts a character on the screen. In this chapter we will
see exactly how this works.

'fo control the LCD, you use port FEh =254d to send commands and
read status and port FFh = 255d to send and receive data bytes (see Figure
4-7}). We will discuss this in more detail later.

Ports BOh=185d and BAh = 186d specify which of the ten horizontal
drivers is being addressed. For port B9h = 185d, bits 0 through 4 control
the selection of the five LCD drivers across the top of the display in left to
right order, and bits 5 through 7 control three of the LCD drivers on the
lower left part of the display. Bits 0 and 1 of port BAh = 186d control the
remaining two LCD drivers for the lower right part of the screen (see Figure
4-7). 'Io turn an LCD driver “on”, so that it can receive a command or
transfer data, put a one in the corresponding bit; and (o turn it “off”, put a
zero in that bit. For example, if you put 00001010 binary into port Boh = 185d
and the binary pattern 10 into bits 0 and 1 of port BAh=186d, then the
LCD drivers will be “on” and “off” in the following pattern:

ofl on off on off
off off off off on

Usually, only one LCD driver is programmed at a time; thus there is usually
only one “1” bit, with the rest egual to “0”.

Several words of warning are needed about using ports BOh = 185d and
BAh = 186d because they are also used for a number of other functions,
including the power, keyboard, clock, buzzer, and communications lines.
Since keyboard scanning, cursor blinking, and clock reading are going on
constantly as a background task, you must turn this background task off
before selecting the LCD drivers. This is somewhat dangerous, since if you
don’t turn this task back on, your keyboard will no longer work, and you will
lose control of your machine. Fortunately, when you program in BASIC, the
keyboard-cursor-clock is turned back on for the INPU'T statement and as
BASIC finishes running your program.

88 Hidden Powers of the TRS-80 Model 100

You should be careful not to disturb bits 2 through 7 of port BAh = 186d.
In fact, if you put a zero into bit 4 of this port, you will turn off the power
to the machine! To properly program this port, you must read the port first,
AND its contents with the mask 11111100 binary, OR the contents with
000000aa binary, where aa is the desired pattern for bits 0 and 1, and then
put the result back into the port.

LCD commands, which are sent through port FEh =254d, allow you to
turn the display on and oft and specity how data bytes are to be loaded in
and out of the LCD driver chip. Each command byte consists of two parts
or fields: a two-bit bank selector field that is stored in bits 6 and 7, and a six-
bit field that is stored in bits O through 5.

Figure 4-7. Control, status, and data ports for the LCD

Hidden Powers of the Liquid Crystal Display 89

The six-bit held of the command byte contains a number between 0 and
63. If this number 1s in the range from 0 to 49, it indicates a horizontal byte
position in the bank specified by the two-bit bank select field. This byte
position is called the current byte position and is used to indicate where the
next byte will be loaded in or out of the driver. For example, if you send the
command byte the binary value 01000011, then the bank select field is 01,
and the horizontal position field is 000011 binary or 3 decimal. Thus the
next data byte will be at position 3 of bank 1 (see Figure 4-8).

Values greater than 49 in the six-bit field program the LCD driver in
other ways. For example, a value of 56 in the six-bit field turns off the
display, making the corresponding part of the screen blank; a value of 57
turns the display back on, and values of 58 and 59 affect the order in which
bytes are to be loaded in or out of the display.

After a data byte is loaded in or out of the driver (through port
FFh=255d), the current position is advanced. Normally the position ad-
vances to the right, but you can reverse the direction by sending a command
byte with a value of 58 in its six-bit field. In this mode bytes are loaded into
the LCD in right-to-left order. 1o return to the normal left-to-right loading
order, send a command byte of 59.

As we noted above, to address an individual pixel of the display, you
must determine its LCD driver, its bank, its horizontal byte position, and its
position within that byte. Here is a BASIC program that illustrates how
these considerations can be used to plot a pixel anywhere on the screen.

Figure 4-8. Loading an LCD driver

90 Hidden Powers of the TRS-80 Model 100

146
1iad
12@
138
1de
106
168
179
18
19@
200
218
228
o348
249

* LCD DIRECT PROGRAMMING

CLE

INPUT "LCD ENABLE BITS (@-1823)"3E
INFUT "LCD BANK (2-33273B

INPUT "LCD BYTE POSITION (@£-B3)"sH
TNFUT "LCD BYTE YALUE {9-2BE) "3y
INPUT “NUMBER OF BYTES (:91" N
Eall 393ea

guT 185, E AND 255

P: = IMP({IBE) AND 2354

guT 18B. PL1 OR (3 AND E/ZEB)

QUT 2854, Bd=4(D AND 3) + (B3 AND H)

FGR I = 1 TO N
GUT 255 250 AND U
NEXT

Line 110 clears the screen so that you can better see the program’s
result. It also forces the input statement to the top of the screen so that the
display won’t scroll and make your result disappear before you can examine
it. Lines 120-160 input five parameters, specifying the acceptable ranges
for their values (see Figure 4-9). E is the ten-bit enable/disable pattern that
is sent to ports B9h = 185d and BAh = 186d. This selects a combination of
LCD drivers. B selects one of the four banks in the selected LCI drivers. H
selects the horizontal byte position within the bank. V specihies the bit
pattern for the byte. N specifies the number of bytes that will be sent to the
LCD drivers. Line 170 turns off the clock-cursor-keyboard background task.
{This routine is located at 765Ch = 30,300d, as we shall see later.) Line 180
sets the lower eight enable/disable bits, and lines 190-200 set the upper two
enable/disable bits for the LCD drivers. Line 210 computes the bank and
horizontal position command byte and sends it out port FEh = 254d. Lines
220-240 form a FOR..NEXT loop to send the data byte out port FFh=255d
the specified number of times. Try typing this program in and running it.

In the next section we will see how the Model 100 controls these quan-
tities to plot points, lines, boxes, and characters.

ROM Routines for the LCD

The Model 100 ROM contains routines to plot and erase points, to draw
lines and boxes, and to print characters on the screen. It also contains code
to make the cursor blink. We'll discuss these routines in detail so you can
learn how to take advantage of them. You will find them useful for creating
special effects such as scrolling subsections of the screen and making real-
time displays of complex data. Having complete control of the screen is
especially useful if you are designing games or educational programs,

Hidden Powers of the Liquid Crystal Display %1

Point Plotting

Let’s start with the point-plotting routines. They give you control of each
individual dot on the screen. In BASIC, the PSET and PRESET commmands
are used to plot points. PSET is used to turn on pixels, and PRESET is
used to turn them off.

PSET and PRESET

BASIC commands are implemented as routines in the ROM. The rou-
tine for PSET starts at 1C57h="7255d (see box), and the routine for PRE-
SET starts at 1C66h = 7270d (see box). These routines first call a routine
starting at 1D2Eh=7470d, which gets the (x,y) coordinates of the point
from the BASIC. command line (see box).

Routine: PSET Command

Purpose: To plot a point on the LCD screen

Entry Point: 1C57h =7255d

Input: Upon entry, the HL register pair points to the end of the
PSET command line, which contains the coordinates of the point in

tokenized form. (See the TRS-80® Model 100 Portable Computer manual
for the syntax of the PSE'T command.)

il

Output: 'Io the screen
BASIC Example:

CALL 7255:0,6318%

where the input buffer at F681h=63,105d contains a tokenized
BASIC PSET command line starting with the coordinates of the
point. Call the tokenizer routine at 646h = 1606d before using this
example.

Special Comments: The input buffer at F681h=63,105d is also
used by the INPUT command.

Figure 4-9. How E, B, H, V, and N program the LCD

92 Hidden Powers of the TRS-80 Model 100

Hidden Powers of the Liquid Crystal Display 93

Routine: PRESET Command

Purpose: To erase a point on the LCD screen

Entry Point: 1C66h=7270d

Input: Upon entry, the HL register pair points to the end of the
PRESET command line, which contains the coordinates of the point

in tokenized form. (See the TRS-80® Model 100 Portable Computer
manual for the syntax of the PRESET command.)

Output: "l0 the screen
BASIC Example:

CALL 727@.,2,B3103%

where the input buffer at F681h=63,105d contains a tokenized
BASIC PRESET command line starting with the coordinates of the
point. Call the tokenizer routine at 646h = 1606d before using this
example. :

Special Comments: The input buffer at F681h=63%,105d is also
used by the INPUT command.

PLOT/UNPLOT.

For PSET the plotting routine is at 744Ch = 29,772d and is called PLOT
(see box), and for PRESET it is at 744Dh = 29,773d and is called UNPLOT
(see box). These are really two entries into the same plotting routine. In the
first case, a nonzero value is placed in the A register at the beginning of the
routine. In the second case, the A register is cleared at the beginning of the
plotting routine. In either case, the x-coordinate (horizontal position) is in
the D register, and the y-coordinate (vertical position) is in the E register.

Routine: Get (x,y) Coordinate
Purpose: 'To get (x,y) coordinate from BASIC command line
Entry Point: 1D2Eh = 7470d

Input: Upon entry, the HI. register pair points to a tokenized string
containing the (x,y) coordinates.

Output: When the routine returns, the D register contains the value
of the x-coordinate and the E register contains the value of the y-
coordinate.

BASIC Example: Not directly applicable

Special Comments: None

Routine: PLOT
Purpose: To plot a point on the LCD display screen
Entry Point: 744Ch=29,772d

Input: Upon entry, the D register contains the x-coordinate and the
E register contains the y-coordinate.

Output: To the screen
BASIC Example: Not directly applicable

Special Comments: None

Routine: UNPLOT
Purpose: To erase a point on the LCD display screen
Entry Point: 744Dh =29,773d

Input: Upon entry, the D register contains the x-coordinate and the
E register contains the y-coordinate.

Output: To the screen
BASIC Example: Not directly apphicable

Special Comments: None

94 Hidden Powers of the TRS-80 Model 100

Hidden Powers of the Liquid Crystol Display 95

The first action taken by the PLOT/UNPLOT routine is to call a routine
starting at 765Ch = 30,300d that turns off the clock-cursor-keyboard back-
ground task (see box). Specifically, this routine turns oft interrupt number
7.5, which is normally generated by the clock chip every four milliseconds
to run the clock-cursor-keyboard background task. (This interrupt will be
discussed in more detail in Chapters 5 and 6.)

Routine: Turn Off and Reset Interrupt 7.5
Purpose: To turn off and rearm interrupt 7.5
Entry Point: 765Ch = 30,300d

Input: None

Output: When the routine returns, interrupt 7.5 is disabled and
rearmed for the next time it is enabled.

BASIC Example:
CALL 39380

Special Comments: The interrupt can be reenabled in a number of
ways, such as by means of a PRIN'T command or the termination of
a BASIC program.

Routine: Enable LCD Drivers

Purpose: To enable LCD drivers

Entry Point: 753Bh=30,011d

Input: Upon entry, the HL register pair points to an entry in special
tables in memory that contain bit patterns to set the 8155 PIO chip
that controls the LCD drivers. There are two such tables. One table
begins at 755 1h = 30,033d, has three bytes per entry, and is indexed
by the column position for character positions. The other (see Fig-
ure 4-10) begins at 7643h = 30275d, has two bytes per entry, and is
indexed by the particular LCD driver.

Output: The specified LCD driver 1s enabled, and the others are
disabled.

BASIC Example:

Catt 390@13%.,8,:38273+2%1

where L is a number between 0 and 9 and indicates the particular
LCD driver.

Special Comments: None

The PLOT/UNPLOT routine divides the x-coordinate by 50. The quo-
tient determines which pair of horizontal LCD drivers controls the pixel,
and the remainder determines the byte position within the driver.

Enabling the LCD Druvers

The y-coordinate is processed to determine whether the pixel is in the
upper or lower half of the screen. This determines which set of five horizon-
tal LCD drivers should be addressed. The HL register points to the first
half of a table in memory for the upper half of the screen and the second
half of the table for the lower half of the screen (see Figure 4-10). This table
contains the bit patterns for enabling the LCD drivers through ports
BYh = 185d and BAh = 186d. The quotient determined by the PLOT/UN-
PLOT routine is added to the HL register to point to the bit pattern for the
desired L.CD driver, Then the routine at 753Bh = 30,011d (see box) is called
to send these enable/disable bits to select the correct LCD driver.

96 Hidden Powers of the TRS-80 Model 100

The bits that determine the bank number are shifted into the upper two
bits, their correct position within the command byte. The bank bits and the
horizontal byte position are combined and stored in the B register, ready to
be sent to the command port of the 1L.CD driver.

Because the bit for the pixel is stored within a byte that has bits tor
seven other pixels, the contents of the byte must be read first. This way the
values for the other bits can be preserved when the byte is put back.

The routine to read the byte from the LCD driver is located at
74F5h=29,941d (see box). It waits for the LCD driver status to mndicate
that the driver is ready to receive a command. Then 1t sends the command
byte. Finally, it reads the data byte (when status indicates the data byte is
ready). The ready status is contained in bit 7 of port FEh =254d.

Hidden Powers of the Liquid Crystaf Display 97

The y-coordinate is used to determine a mask for the bit position within
the byte. This uses some modular arithmetic and the same rable that was
used for the ports B9h = 185d and BAh = 186d. The mask contains a “1”
in the correct bit position and “0” in the other positions. For the PSET
command, the mask is ORed with the byte just read from the LCD driver.
For the PRESET command, the mask is used to clear the appropriate bit of
this byte.

The correctly modified byte is sent back to the LCD driver by calling the
routine at 74F6h =29,941d (see box). This works almost the same as the
read routine; indeed, it is the same except for a byte at its entry.

Routine: Read LCD Bytes
Purpose: To read a sequence of bytes from an LCD driver
Entry Point: 74F6h =29,941d

Input: Upon entry, the B register contains a command byte for the
selected LCD driver, the HL register pair points to an area of mem-
ory to which the bytes are to be transferred, and the E register
contains the number of bytes to be transterred. The command byte
usually selects the bank and byte position within the byte. See the
text for further explanation.

Output: When the routine returns, the bytes from the LCD driver
are in mermory, starting at the location specified by HL upon entry.

BASIC Example: Not directly applicable

Routine: Write LCD Bytes
Purpose: To write a sequence of bytes to an LCD driver
Entry Point: 74F6h =29,914d

Input: Upon entry, the B register contains a command byte for the
selected LCD driver, the HL register pair points to an area of mem-
ory from which the bytes are to be transferred, and the E register
contains the number of bytes to be transferred. The command byte
usually selects the bank and byte position within the byte. Sce the
text for further explanation.

Special Comments: None

Output: When the routine returns, the bytes from the specified
memory area are transferred to the LCD driver.

43 BASIC Example: Not directly applicable
00000000{00000001
00000000{00000010
000006000[00000100
00000000[00001000
00000000}00G10000

Special Comments: None

The last thing that the PLOT/UNPLOT routine does is turn on the 7.5
interrupt so that the clock-cursor-keyboard background task can continuc.
The routine to do this is located at 743Ch =29,756d (see box). Remember
that this background task must continue to operate in order for the key-
board to function.

00000000{00100000
Q0000000{01 000000
00000000{10000000
00000001{00000000
00000010j00006000

Figure 4-10, Table for enabling LCD drivers for point plotting

98 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the Liquid Crystal Display 99

Routine: Turn on Interrupt 7.5
Purpose: To enable interrupt 7.5
Entry Point: 743Ch =29,756d

Input: None

Output: To the interrupt control
BASIC Example:

Call 297506

Special Comments: None

Line Drawing

Line drawing and area filling are at the next higher level above point
plotting. The routine to draw lines starts at 1C6Dh=7277d (see box). It
can be invoked from the BASIC LINE command. The LINE command has
a number of parameters and options. It can draw lines and rectangles (filled
or unfilled). The endpoints of the lines and the corners of the rectangles
can be specified either as a pair of points in the form

(x1,yD)-(x2,y2)

or as a single point in the form

-(x2,y2)

You can see that in the second case, the first point is not specified. Instead,
an unscen graphic cursor called the “CP” (current position) is used. Each
time a point, line, or box is drawn with the PSET, PRESET, or LINE
commands, the CP is updated to the last point referenced. This is done at
1D46h =7494d in the routine by getting the (x,y) coordinates from the

command line. The CP is stored at location F64Eh = 63,054,

100 Hidden Powers of the TRS-80 Model 100

Routine: LINE — BASIC command (Graphics)
Purpose: 'lo draw a line on the LCD screen
Entry Point: 1C6Dh=72774d

Input: Upon entry, the HL register pair points to the end of the
LINE command line, which contains the coordinates of the point in
tokenized form. See the TRS-80® Model 100 Portable Comfruter man-
ual for the syntax of the LINE command.

Output: Io the screen
BASIC Example:

CALL 7277.8,83103

where the input buffer at F681h=163,105d contains a tokenized
BASIC LINE command line starting with the coordinates of the
point. Call the tokenizer routine at 646h = 1606d before using this
example.

Special Comments: None

The line-drawing routine uses a form of Bresenham’s line-drawing al-
gorithm and calls either PLOT or UNPLOT to plot or erase points along
the line, depending upon the particular “color” chosen. Bresenham’s line
drawing algorithm is a well-known method for drawing lines quickly. It
consists of an initialization stage and a tight loop that steps through the
pixels along the line, performing a series of vertical, horizontal, and diago-
nal moves. In the Model 100’s ROM the initialization part starts at
1CD9h = 7385d, and the loop starts at 1D0OCh =7436d.

The box-drawing option of the LINE command calls the Bresenham
algorithm four times, once for each side of the box. The routine for this is
at ICBCh=7356d (see box). A box-fill option at 1CABh=7333d (see box}
has a loop that calls the Bresenham algorithm over and over again to fill in
all the rows inside a specified rectangle.

Hidden Powers of the Liquid Crystal Display

101

Routine: Box — Unfilled.
Purpose: 16 draw an unfilled box on the LCD screen
Entry Point: LCBCh = 7356d

Input: Upon entry, the coordinates of two opposite corner points of
the box are on the stack. For each of the two corner points there is
one word on the stack. The upper byte of this word contains the x-
coordinate, and the lower byte contains the y-coordinate.

Output: To the screen
BASIC Example: Not directly applicable

Special Comments: None

Routine: Box — Filled
Purpose: To draw a filled box on the LCD screen
Entry Point: 1CA5h=7333d

Input: Upon entry, the coordinates of two opposite corner points of
the box are on the stack. For each of the two corner points there is
one word on the stack. The upper byte of this word contains the x-
coordinate, and the lower byte contains the y-coordinate.

Output: To the screen
BASIC Example: Not directly applicable

Special Comments: None

Level 1

Character plotting at the highest level (level 1) can be called by the RST
4 instruction. This is a software interrupt; that is, it is a CPU instruction
that acts just like a hardware interrupt. The RST 4 instruction calls what-
ever routine 1s located at address 20h=32d. In the Model 100’s ROM,
address 20h = 32d is the start of a jump to 4B44h = 19,268d, which is where
the character output routine is actually located.

The level 1 character-plotting routine at 4B44h=19,268d displays a
character on the screen at the current cursor position (see box). Before the
routine is called, the ASCII code must be in the A register. This routine is
called .CD by Radio Shack, but it can be used to direct output to other
devices as well, such as the printer and the optional CRT display screen,
Perhaps a better name for this routine would be CONSOLE OUT. You can
access this routine directly by typing:

CAaLL 32,85

or

ALl 19:268.65

In both cases this will place an uppercase “A” on the screen.

Routine: Character Plotting — Level 1
Purpose: To print a character on the LCD screen
Entry Point: 4B44h = 19,268d

Input: Upon entry, the A register contains the ASCII code of the
character to be printed.

Output: To the screen
BASIC Example:

Character Plotting (Text)

The routines to plot characters on the screen are more complicated than
the point- or line-drawing routines. The text routines have a multitude of
levels; that is, a higher-level routine calls a lower-level routine, which calls a
still lower-level routine, and so forth. We'll go through these routines level
by level.

CALL 192Z68:A

where A is the ASCII code of the character to be printed.
Special Comments: RST 4 also calls this routine (see Chapter 3).

102 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the Liquid Crystal Display 103

Location F675h = 63,093d contains what we call the “print flag”. The
level | routine checks to see if the print flag is nonzero. If it is nonzero,
output from this routine goes to the printer. If it is 0, the routine branches
to 4BAAh = 19,370d, where the level 2 character plotting routine is called.

Level 2

The level 2 character-plotting routine is at 4313h=17,171d (see box).
It has “hooks” to allow user-defined routines to be called (see Figure 4-11).
By “hook” we simply mean a way for users to attach their own routines.

Routine: Character Plotting — Level 2
Purpose: 'Io print a character on the LCD screen
Entry Point: 4313h=17,171d

Input: Upon entry, the ASCH code of the character to be printed is
in the A register.

Output: 1o the screen

BASIC Example:

Erll. 17171:A

where A 1s the ASCII code of the character to be plotted.

Special Comments: None

These “hooks™ are done through the RST 7 interrupt instruction (see
box in Chapter 3). This instruction calls location 38h = 56d, which jumps
to location 7FD6h = 32,726d, where there is a dispatcher routine. The dis-
patcher routine calls one of the routines whose addresses are stored in a big
table in RAM called the “hook” table. This table starts at address FA-
DAh=64,218d. Normally, the addresses in the first half of the hook table
all point to a routine that consists of just a return instruction. The addresses
in the second half of this table point to a routine that outputs the iltegal
function error message. The byte following the RST 7 instruction is used to
index into the hook table. For level 2 character plotting, this index is 8. This
points to a return instruction, If you want to use your own routine, put its
address into the RAM address FADAh + 8, and it will be called every time
you plot a character on the screen.,

104 Hidden Powers of the TR5-80 Model 100

Level 3

After the level 2 character-plotting routine calls the “hook”, it calls the
level 3 character-plotting routine.

The level 3 character-plotting routine at 431Fh = 17,183d checks loca-
tion F638h =63,052d (see box). If this is nonzero, a RST 7 instruction calls
the hook table with index 3Ch =60d. Normally this is an illegal function,
but it can be redefined if you want. If location F638h =63,032d is zero, the

function
rouvtine

Figure 4-11. How the hook table works

Hidden Powers of the Liquid Crystal Display

level 4 character-plotting routine is called. Thus location F638h =63,032d
can be used as a device flag for substituting a new device for console output.

Routine: Character Plotting — Level 3
Purpose: 1o print a character on the LCD screen
Entry Point: 431Fh=17,183d

Input: Upon entry, the ASCII code of the character to be printed is
in the A register.

Output: o the screen
BASIC Example:

Eali. 171834

where A is the ASCII code for the character to be printed.

Special Comments: None

Level 4

The level 4 character-plotting routine is located at 4335h = 17,205d (see
box). It turns off the clock-cursor-keyboard background task, calls the level
5 character-plotting routine, adjusts the cursor if it is enabled, and then
turns the clock-cursor-keyboard background task back on. Location
F63Fh =63,039d stores the cursor enable flag.

Routine: Character Plotting — Level 4
Purpose: 1o print a character on the LCD screen
Entry Point: 4335h=17,205d

Input: Upon entry, the ASCII code of the character to be printed is
in the C register.

Output: To the screen
BASIC Example: Not directly applicable

Special Comments: This routine cannot be CALLed from BASIC
because the ASCI1I code must be in the C register.

106 Hidden Powers of the TRS-80 Model 100

Level 5

The level 5 character-plotting routine at 434Ch = 17,228d handles con-
trol characters and escape sequences (see box). If the character is not a
control character and is not part of an escape sequence, it calls the level 6
character-plotting routine and advances the cursor.

Routine: Character Plotting — Level 5
Purpose: 1o print a character on the LCD screen
Entry Point: 434Ch=17,228d

Input: Upon entry, the ASCII code for the character to be printed
is in the C register.

Output: 1o the screen
BASIC Example: Not directly applicable
Special Comments: None

Control Characters and Escape Sequences

The control characters for the Model 100 include bell (ASCII 7), back-
space (ASCII 8), tab (ASCII 9), linefeed (ASCII 10), formfeed (ASCII 12),
carriage return (ASCII 13), and delete (ASCII 7Fh=127d). The level 5
character routine looks for some of these control characters directly and
checks for others in a special table at 438Ah = 17,290d (see Appendix K for
a complete list).

Escape (ASCII 27) is the control character to initiate an escape se-
quence. An escape sequence consists of the escape character followed by a
sequence of ASCII codes which are to have a special meaning. The Model
100 has a nice set of escape sequences. For example, escape followed by the
ASCII code for E 1s used to indicate that the screen should be erased, and
escape followed by the ASCII code for Y and then by two more bytes moves
the cursor to a position specified by those two bytes.

The Model 100 looks for escape sequences in a table at 43B8h=17,336d
(see Appendix L). When it detects an escape, it sets a flag (stored at location
F646h = 63,046d) so that the next character will be looked up in that table.
Some escape sequences have only two characters (for example: escape, E
for clearing the screen), and some have more {for example: escape, Y, byte,
byte tor direct cursor addressing).

Hidden Powers of the Liquid Crystal Display

107

Some escape sequences duplicate the actions of the control characters.
For example, formfeed (ASCII 12) and the escape “E” sequence both call
the routine at 4548h = 17,736d, which clears the screen and puts the cursor
into the home position.

A number of escape sequences and contro] characters can be generated
by calling routines (see Appendix M). These are not the routines that
actually do the work, such as clearing the screen; instead, they use the RST
4 instruction to send the appropriate control codes and escape sequences.
For example, formfeed is generated by calling 4231h = 16,945d, and escape
“Q", the escape sequence to turn off the cursor, is generated by calling
424Eh = 16,974d. These routines can be called directly from BASIC pro-
grams to perform the indicated functions.

Level 6

The level 6 character-plotting routine is located at 4560k = 17,760d (see
box). It puts the ASCII codes for the characters into a special area of
memory called the LCD RAM. It also calls the level 7 character-plotting
routine to actually plot the character on the screen. The LCD RAM is
located from FEOOh=65,024d to FF3Fh=65,343d. It contains a byte tor
each character position on the LCD screen. The level 6 character- plotting
routine computes the proper address in this RAM and moves the character
there so that the current state of the text display on the LCD is always
immediately available in this area of main memory.

Routine: Character Plotting — Level 6
Purpose: 1o print a character on the LCD screen
Entry Point: 4560h = 17,760d

Input: Upon entry, the C register has the ASCII code of the char-
acter, and the HI. register pair contains the cursor position of the
character. The H register contains the column position (1-40), and
the L register contains the row position (1-8).

Output: 'lo the screen

BASIC Example: Not directly applicable

Special Comments: None

The LCD RAM is used when the display is scrolled. Scrolling a screen
involves rapidly moving characters from one part of the screen to another.
When the screen is scrolled on the Model 100, bytes are read not from the
LCD drivers but from the LCD RAM area. The scrolling routine is located
at 44D2h=17,618d (see box). It reads the LCD RAM (via a routine at
4512h = 17,682d — see box) to get the characters and then calls the level 6
character-plotting routine (at 4566h = 17,766d instead of 4560h = | 7,760d}
to place the scrolled characters back on the screen and into the LCD RAM.
At the end of the scrolling routine the next line of the display is erased.

Routine: Scroll

Purpose: 'Io scroll part of the LCD screen

Entry Point: 44D2h=17.618d

Input: Upon entry, the A register contains the scroll count (1-7),
and the L register contains the line number (1-7) of the first line to
be scrolled. The H register can contain any value. The number of

lines scrolled is one more than the scroll count. The sum of the
contents of A and L should not exceed 7.

Output: To the screen and the screen RAM (starting at
FEOOh=65,024d). '

BASIC Example:

CALL 17G18 Nl

where N is the scroll count and L is the first line to be scrolled.

Special Comments: The scrolling always affects one more line than
the scroll count. For example, if you scroll one line, starting with line
L, then the contents of line L+ 1 will be moved to line 1. and line
L+ 1 will be erased.

108 Hidden Powers of the TR5-80 Model 100

Hidden Powers of the Liquid Crystal Display

109

1a¢
11@
128
130
149
15d
168
179
18@
1899
2d4d
21
22@

236

Routine: Get Character from LCD RAM
Purpose: 1o get a character from the LCD display
Entry Point: 4512h=17,682d

Input: Upon entry, the HL register pair contains the cursor posi-
tion. H contains the column (1-40}, and L contains the row

(1-8).

Output: When the routine returns, the ASCII code for the character
is in the C register.

BASIC Example: Not directly applicable

Special Comments: None

We have included a BASIC program to illustrate how to use the scrolling
routine. This program displays a simple message on each line of the screen
and then scrolls lines 5 and 6. To stop the program, hit (BREAK).

f SCROLLING EXAMPLE

fLABEL THE OISPLAY
CLS
FOorR I = 1 70 B
PRINT "LINE™HI}
IF I8 THEM PRINT
NEXT I

fOSCROLL Lo
PRINT CH&(27)3"Y% SCROLLY 3J5
d=d+1
CAaLL 1761d.145
GBTO 134

Looking at the program in detail, we see that it consists of two loops.
The first loop (lines 120-170) displays the label "LINE i” on each line,
where i is the number of the line. Notice that all but the last linc are
terminated with a PRINT statement (line 160). The last line is handled
differently so that it won’t be automatically scrolled up and ruin the display.

The second loop scrolls lines 5 and 6 of the display. On line 200, an
escape sequence is used to place the cursor on line 6 of the display, then
place the message “SCROLL j” there, where j is the value of a variable J. In
line 210, J 1s incremented. In line 220, the scrolling routine is called, with

110 Hidden Powers of the TRS-80 Model 100

the A register set to | and the HL register pair set to 5. This forces the
scrolling to begin on line 5 with a scroll count of 1. Thus two lines, lines 5
and 6, are attected by the scroll. The program then loops around for the
next time through the scroll loop.

Level 7

The level 7 character-plotting routine is located at 73EEh =29,678d.
Notice that this address is quite different from the addresses for the other
levels of LCD routines. The 7000h area of memory (above 28,672d), where
this routine is located, contains routines that are much more “primitive”
and device oriented than routines located in other areas.

Routine: Character Plotting — Level 7
Purpose: To print a character on the 1.CD screen
Entry Point: 73EEh =29,678d

Input: Upon entry, the C register contains the ASCII code of the
character, and the HL register pair contains the character position.
H contains the column (1-40), and L. contains the row (1-8).

Output: 1o the screen
BASIC Example: Not directly applicable
Special Comments: None

The level 7 character-plotting routine looks up the bit patterns for the
characters in a table starting at 7711h=30,481d. This table contains five
bytes for the dot matrices for characters whose ASCII codes are in the range
20h=32d through 7Fh = 127d and six bytes for those in the range 80h = 128d
through FFh=255d. The six-byte part of the table starts at 78F1h=350,961d.
The bytes of this table correspond to the columns of the dot matrix for the
characters. This is in contrast to the way CRT character generators usually
store the character dot matrix, which is row by row.

The level 7 routine turns off the clock-cursor-keyboard background
task, stores the stack pointer in FFF8h = 65,528d, and looks up the charac-
ter in the previously mentioned character table. The routine takes the bytes
from this table and stores the dot matrix for the character in a six-byte area
starting at FFECh = 65,516d. If the table entry has only five bytes, the sixth
position is filled in as blank. The level 7 routine calls upon a byte-plotting
routine at 74A2h =29,858d, which sends the bytes to the LCD drivers and

Hidden Powers of the Liquid Crystal Display

m

concludes by turning on the clock-cursor-keyboard background task with
the routine at 473Ch =19.2374d. o

The byte-plotting routine computes the information to program th
LCD driver (see box). Location FFF4h=65,524d contains the row, and
location FFF5h =65,525d contains the column, of the character position. A
table starting at 7551h =30,033d (see Appendix N} gives information that
should be sent out ports B9h = 185d, BAh = 186d, and FEh = 2b4d for each
horizontal character position on the upper and lower halves of the screen.
You may recall from our discussion of point plotting that ports B9h = 185d
and BAh = 186d are used to select which of the ten LCD drivers should be
enabled and that port FEh=254d is used to select the byte position within
the correct LCD driver. The first two bytes of each entry of this table give
the enable information that is sent out ports B9h = 185d and BAh = 1864d.
The third byte of each entry gives the horizontal position within the LCD
driver. Bank selection information from the character row position must be
combined with it before it is sent out port FEh=254d.

Routine: Byte Plotting

-

Purpose: To send six bytes of a character dot matrix to or from LCD
drivers

Entry Point: 74A2h =29,858d

Input: Upon entry, location FFF4h = 65,524d contains the row and
location FFEFSh = 65,525d contains the column position of the char-
acter to be plotted on the screen. The HL. register pair points to the
area of memory where the bytes of the dot matrix are stored. This
is normally a temporary storage butter located at FFECh =65,516d.
The D register contains the read/write command. If the bytes are to
be sent to the LLCD driver, D must contain a 1; otherwise, the bytes
are to be read from the LCD drivers.

Output: The character is plotted on the screen. Location FFF6h is
affected. It contains a pointer to a table used for selecting the correct
LCD drivers.

BASIC Example: Not directly applicable

Special Comments: None

The byte-plotting routine for characters shares a good deal of machine
code with the byte-loading routines for plotting points. In particular, it
shares the section of code that actually sends the bytes to the LCD drivers.

112 Hidden Powers of the TRS-80 Model 100

When it is used to plot characters, the byte-plotting routine sends six
bytes at a time to the LCD drivers. These bytes are taken from location
FFECh=65,516d, where they were put by the level 7 character-plotting
routine, and sent out port FFh=255d. The LCD driver accepts them seri-
ally, incrementing the horizontal byte position each time. Sometimes, how-
ever, the character cell overlaps areas of the screen controlled by two different
LCD drivers. The routine is very cleverly designed to send the first few bytes
to one driver and the last few bytes to the next driver.

Cursor Blinking

Cursor blinking is controlled as one part of the clock-cursor-keyboard
background task. The cursor code starts at 7391h =29,585d. The actual
blink routine starts at 73A%h = 29,609d (see box).

Routine: Cursor Blink
Purpose: To blink the cursor
Entry Point: 73A9h = 29,609d

Input: The temporary dot matrix character buffer at
FFECh =65,516d must contain the dot matrix of the character that
is to be blinked. Location FFF3h=65,523d contains a counter to
time the blinking,

Output: 1o the screen
BASIC Example:

CaLL Z9Bés

Special Comments: The background task must be turned off for
this BASIC example to work. Use CALL 30300 to turn off the
background task.

First, the cursor routine calls the routine at 765Ch=30,300d. This
turns off interrupt 7.5, which initiates the entire clock-cursor-keyboard task.
In this case, however, the routine is called to “rearm” the interrupt. This
particular interrupt on the 8085 CPU must be rearmed after each use.
Next, the cursor routine checks a counter at FFF3h=65,523d. The inter-
rupt itself happens every 4 milliseconds, but the counter is set to count
down {rom 125, giving a cursor change every 500 milliseconds. The byte-

Hidden Powers of the Liquid Crystal Display

113

plotting routine is used to read six bytes from the LCD drivers at the current
cursor position on the screen. These bytes are stored starting at location
FFECh=65,516d. They are then reversed and sent back via the byte-plot-
ting routine. A code of 0 in the D register upon entry to the byte-plotting
routine means read from the LCD drivers, and a code of | in the D register
means write to the LCD drivers.

The cursor routine ends in a return that sends it on to the next part of
the background task.

Here’s a program that blinks the cursor directly. It quickly blinks the
cursor 100 times and then exits. You can change its timing to make the
cursor behave in any way you want.

igg 7 BLINK THE CUREBOR

i -

12@ Call 3a36d

138 FOR I = 1 70 184

146 CALL ZHbedy

156 FOR 0 = 1 TO Z@:NERT J

164 MEXT 1

On line 120 of this program, the background task is disabled because it

too blinks the cursor. The rest of the program consists of a FOR loop (lines
130-160) in which the blink routine is called (line 140) and a short delay is
made between blinks (line 150). The delay is made with a FOR loop that
counts to twenty. 1o make the cursor blink faster or slower, change the count
in this FOR loop.

Summary

In this chapter we have seen how the LCD works and how it is pro-
grammed. In particular, we have seen how it plots points, lines, boxes (filled
and unfilled), and characters. We have seen that character plotting is a
multilevel process in which the top levels are machine-independent and
allow for other devices to be attached for console output, while the bottom
levels are very much dependent upon the peculiarities of the LCD display.
We have also taken a look at the code in the background task that makes the
cursor blink.

114 Hidden Powers of the TR$-80 Model 100

Hidden Powers of the
Real-Time Clock

Ee real-time clock provides the Model 100 with a way to tell both the
regular “wall clock” time and the calendar date. This allows you to write
programs that do things at prescribed times, making your Model 100 into a
valuable assistant for reminding you about appointments and other things
you have to do. The timing feature can also be used to control equipment,
turning it on and off according to whatever rules you program,

The clock also generates a timing pulse that the Model 100 uses to kecp
a background task going. This background task performs a number of vital
functions such as blinking the cursor, updating the system time for the ON
TIMES$ interrupe, maintaining the automatic power shutoff, and scanning
the keyboard.

In this chapter we'll explore the secrets of the real-time clock in the
Model 100. We'll start with the hardware and then see how it can be used to
set and read the computer’s time and date, how it helps control the ON
TIME$ interrupt, and how it is used in connection with the clock-cursor-
keyboard background task.

115

How the Real-Time Clock Works

The real-time clock in the Model 100 is housed in a chip called . PD
1990 AC. The time and date can be written to and read from this clock by
sending bits through various CPU ports. The clock chip also outputs a
timing pulse that triggers an interrupt to drive the clock-cursor-keyboard
background task. A crystal keeps this clock ticking by feeding it electrical
pulses at a constant predetermined rate. For the Model 100, the crystal for
the clock oscillates at 32,768 cycles per second.

The clock chip contains a series of counters that count seconds, minutes,
hours, days of the week, days of the month, and months (sec Figure 5-1).

Every 32,768 “ticks” of the crystal causes the seconds counter to incre-
ment by one; every time the seconds counter reaches 60, it is zeroed and the
minutes counter is incremented; and so on through the hours, days, and
months. The chip itself does not have a counter for years.

Most of these counters have a regular cycle. However, the job of the days-
of-the-month counter is harder because different months have different
numbers of days. The chip is specially preprogrammed to handle this.

It is important to realize that the counting goes on independently of the
CPU. Thus, it is not influenced by whatever kind of programs are running
on the machine. As a result it can keep accurate time.

A forty-bit shift regisier 1s connected to the time and date registers to
assist with transferring information to and from the time and date counters.
In general, a shift register is a row of bit “cells” with provision for serial
transfer operations, in which binary information is shifted left and/or right
along the row. There are also parallel transfer operations, in which all the bit
cells can be loaded or unloaded (read) at once.

Let’s look at the way the bits in the shift register are assigned (see Figure
5-2). The [orty bits in this register form ten sets, each containing four bits.
The hirst set holds the units digit of the seconds, the second set holds the
tens digit of the seconds, the third set holds the units digit of the minutes,
the fourth set holds the tens digit of the minutes, the fifth set holds the units

Hours Hours | Minutes | Minutes | Seconds | Seconds

{tens} {units) {tens} {units) (tens) {units)

{units)

Figure 5-1. Time and date counters

116 Hidden Powers of the TRS-80 Model 100

digit of the hour, the sixth set holds the tens digit of the hour, the seventh
set holds the units digit of day of the month, the eighth set holds the tens
digit of the day of the month, the ninth set holds the day of the week, and
the tenth set holds the month. Each set of four bits is a binary coded decimal
digit except for the last, which is a hexadecimal encoding of the month.

When the time and date are read from the clock chip, all the bits are
transferred at once (in parallel) from the time and date counters to this
forty-bit shift register. Then the bits are shifted out of the shift register one
by one (serially). Thus the time is “sampled” at a single instant and then
moved through the computer bit by bit. Conversely, when the time is set on
the clock chip, the individual bits of the time and date are first shifted into
the forty-bit shift register one by one (serial transfer), and then the contents
of the shift register are transferred all at once to the various time and date
registers (parallel transfer) (see Figure 5-3). Other clock chips use other
methods for transferring information in and out of the chip. For example,
some clock chips transfer the time as a series of bytes rather than a series of
bits.

Figure 5-2. The forty-bit shift register in the clock

Hidden Pawers of the Real-Time Clock

117

The clock chip is connected to a number of bits in three different ports
of the Model 100 (see Figure 5-4). Three of these, C2, Cl1, and C0, are
command bits and are connected to bits 2, 1, and 0 of port B9h = 185d.
These bits form a three-bit binary number that specifies the mode of oper-
ation for the chip. When bit G2 is zero, the commands control reading and
writing of the real-time clock, and when bit C2 is one, the commands control
the timing pulse (see Table 5-1). The clock commands () (no operation), 1
(serial transfer mode), 2 (parallel transfer to set the time and date), and 3
(parallel transfer to read the time and date) must be used in combination
to set and read the time and date.

Figure 5-3. Read and write operations of the clock chip

118 Hidden Powers of the TRS-80 Model 100

—Commcnd strobe

DATA QUT

DATA IN
Shift clock

Figure 5-4. Ports for the clock

Table 5-1. Clock commands

Hidden Powers of the Real-Time Clock

119

A command strobe bit i1s connected to bit 2 of port E8h=232d. The
purpose of the command strobe is to provide “handshaking” for loading
commands into the (‘hip Each pulse on the command strobe causes a new
command to be read into the Lommand bits C2, CI, and CO in port
BOh = 185d.

You can send commands to the clock by sending a byte out port
B9h = 185d in which bits 2, 1, 0 form the desired command code; and then
strobing the command into the chip by sending a byte to port E8h=232d
in which bit 2 is a one, and then a byte to port E8h in which bit 2 is a zero
(see Figure 5-5). Later we will examine a routine that does this.

The forty-bit shift register has a data input bit, a data output bit, and
data clock input bit. The data input bit is connected to bit 4 of port
B9h = 185d, the data output bit is connected to bit 0 of port BBh=187d,
and the data clock bit is connected to bit 3 of port BOh = 185d. The purpose

command

Clock

Command

strobe

Figure 5-5. Sending a command

120 Hidden Powers of the TRS-80 Model 100

of the data clock is to control the serial shift operation. When the serial
transfer mode has been selected, each pulse on the data clock bit forces the
forty-bit shift register to shift by one place, shifting in one bit from the data
input and shifting out one bit into the data output. We will describe this
process further in the next two sections.

The ROM Routines

The ROM routines for the clock fall into four classes: primitive com-
mand routines, routines to set the clock, routines to read the clock, and the
code for the background task.

The Primitive Command Routine

At the lowest level is a routine to send commands to the clock chip. This
routine is located at 7383h = 29,567 1d of the Model 100’s ROM (see box). In
the next sections we'll see how this routine is used to read and set the time
and date on the Mode! 100, You can also use this routine te control the clock
directly from BASIC or machine language.

Routine: Clock Command
Purpose: To send a command to the clock
Entry Point: 7383h=29,571d

Input: Upon entry, the A register must contain the code for the
clock command. A value of 0 means no operation, a value of 1
means put the clock chip into register shift mode, a value of 2 means
transfer the time and date from the shift register into the clock
counters, and a value of 3 means read the time and date from the
clock counters to the shift register.

Output: The dock is programmed accordingly.

BASIC Example:

CALL 283571 +A.

where A is the clock command,

Special Comments: This is the most primitive level of programming
the clock.

Hidden Powers of the Real-Time Clock

121

What Happens When You Read the Time or Date

Let’s begin with the routines to read the clock, starting at the highest
levels {(BASIC commands) and working our way down to the actual clock
chip routines. The BASIC variables TIME$ and DATE$ are used to read
and set the time and date. To read the time or date from BASIC (while
running a program or in command mode}, you must cause the correspond-
ing variable to be "evaluated”. This means that the variable must be part of
an expression that might appear on the right side of an equals sign, in an
IF clause, or in a PRINT statement.

You can use the information presented in this section to write your own
BASIC or machine-language programs to read the clock chip.

The Time

Like the LCD routines to print a character discussed in the last chapter,
the time and date routines are composed of a number of different levels.
The highest level is designed to execute BASIC commands or functions,
while the lowest level directly controls the physical device — in this case, the
clock chip. The levels are numbered from top to bottom: the highest level
1s called level one, the next lower level is called level two, and so on.

The ROM routine to “evaluate” the BASIC variable TIME$ is located
at 1904h = 6404d (see box). This is the level 1 time-reading routine. It calls
a level 2 time-reading routine and then stores the resulting time in the
proper location.

Routine: Read Time — BASIC Command (Level 1)
Purpose: 1o read the time from the clock chip

Entry Point: 1904h = 6404d

Input: None

Output: When the routine returns, the time is stored as a string
whose address is stored at location FB8Ah =64,394d. Some other
locations used in handling string variables are also affected.

BASIC Example:

CALL GAed

Special Comments: Every time this call is made, a three-byte string
descriptor is placed in memory, starting at FB6Eh =64366d. This
can be done only eight times before BASIC runs out of room and
declares a ST (string too complex) error.

122 Hidden Powers of the TRS-80 Model 100

169
118
128
130
144
150
169
178
18@
19@
200
219
2@
238
248
284
2B
278
=8d
2a4a
324

Here is a BASIC program that exercises the level 1 time-reading routine.
It displays a number of locations that are alfected by this routine. It even
displays the time string itself.

fTEST LEVEL 1 TIME READRING
Call. B4od
HB=PEEK{EA4383)
Wi=PFEK(GA4394) +286#PEERK (G385}
WE=PEERK{BA39G51+256*PEER{(B4397)
W o =PEER{GASBL Y +Z20G#*PEER(BUA3GE)
ZR=PEEK{Y-3)
Si1=PEER{Y -2)+256#PEERK (Y ~11}
PRINT HUSING "s#® iH@ 3
PRINT USING "#a#sas"
FRINT USING "suzaas
PRINT UBING "#uzngsn"
ERINT USING "##" 3793
PRINT USING "suusas"3i1;
PRINT ™ "3
FOR T = &1 TO Zi+7

PRINT CHR${(PEEK{I}) 3

NEXT I
PRINT
GOTO 120

3
.
:

wiE oz aa
ot e
A
e) =

On line 120 of this program, the level 1 time-reading routine is called.
On lines 130-180, we PEEK at varicus values, and on lines 190-290 the
values are assembled into a display line on the screen.

Let’s examine the various PEEKs. The contents of location
FB89h =64,393d is placed in the variable X0. The value is 8, which is the
length of the time string. The contents of locations FB8Ah = 64394d and
FB8Bh=64395d form a 16-bit integer that is placed in the variable X1,
This value is the address of the time string. The contents of locations
FBS8Ch =64396d and FB8Dh = 64397d form a 16-bit integer that is placed
in the variable X2. This value is always one less than X1. The contents of
locations FB69h =64361d and FB6Ah = 64362d form a 16-bit integer that
is placed in the variable Y. This value points just beyond the three-byte
descriptor for the time string. Location Y-3 contains the length of the string
and is placed in Z0. Locations Y-2 and Y-1 form a 16-bit integer that is
placed in the variable Z1. This is also the address of the string,

The display line first shows the value of X0, then X1, then X2, then Y,
then Z0, then Z1, and finally the contents of the string at Z1 through Z1 + 7.

Returning to the ROM routines, we find that the level 2 routine to read
the time is located at 190Fh =6415d (see box). It calls a level 3 time routine,

Hidden Powers of the Real-Time Clock

123

194
11@
129
132
149
159
1G9
174

which reads the raw time and date data into a 10-byte area of memory
starting at F923h = 63.779d (see Figure 5-6). Each set of four bits from the
shift register is placed in a different byte of memory in the order it comes
out of the shift register. Once the raw data is loaded into memory, the level
2 routine turns the time part of this raw data into a string of ASCII numer-
als with the hours, minutes, and seconds separated by colons. Then it calls
a routine at 1996h = 6550d (see box) to fetch the digits and put them in the
string.

Routine: Read Time — Level 2
Purpose: 1o read the time from the clock chip
Entry Point: 190Fh =6415d

Input: Upon entry, the HL register pair contains the address of an
eight-byte area of memory where the string will be stored.

Output: When the routine returns, the time string is stored in the
eight-byte area of memory.

BASIC Example:

CALL G41% .8 ,H

where H points to an area of memory where the time string will be
stored.

Special Comments: None

Here is a BASIC program that explores the level 2 time-reading routine.
It places the time in a string variable that we have under our control. Then
it repeatedly calls the time routine and prints out the contents of this string
variable,

©LEVEL 2 TIME READING

L

£ it

T UARPTR(TS)

H PEER(T+1)+Z5B#PEERK{T+2)
CALL G415 :4;:H

FRINT T$

GOT0 15¢

T%

[I

124 Hidden Powers of the TRS-80 Model 100

149
11@
12@
138
144
158
158
176

Looking more closely at this program, we see that on line 120, some
blank space is reserved in the string variable T$. In line 130 we find the
address of the three-byte string descriptor for T§. In line 140, the address
where the string is actually located is given. In line 150, the level 2 time-
reading routine is called to dump the time into T$, using the variable H to
pass the address. In line 160, T$ is printed. Line 170 loops around to line
150, where the CALL to the time routine is.

The level 3 time-reading routine is located at 19A0h = 6560d (see box).
It points to the raw time and date data by placing the address F923h = 63,779d
in the HL register, disables interrupts, calls a level 4 routine to get the raw
time and date data, and then enables the interrupts before returning.

Routine: Read Time and Date — Level 3
Purpose: ‘1o read the time and date from the clock chip
Entry Point: 19A0h=6560d

Input: None

Output: When the routine returns, the raw time data is in a ten-byte
area of memory starting at F923h=63,779d.

BASIC Example:

caLl GEGe

Special Comments: None

Here is a BASIC program that illustrates the level 3 time and date
reading routine. It loops around and around, calling the level 3 time and
date reading routine and then printing out the raw time and date data.

© LEVEL 3 TIME AND DATE READING
CALL GH3G2
FOR I = B377% TO 3788
PRINT PEEK{I) 3
MEXT 1
PRINT CHR&(13) 73
GOTh 128

Looking more closely, on line 120, the level 3 time and date reading
routine is called. On lines 130-150 the raw time and date data are displayed.
The first digit is the units digit of the seconds, the second digit is the tens

Hidden Powers of the Real-Time Clock

125

digit of the seconds, the third digit 1s the units digit of the minutes, the
fourth digit is the tens digit of the minutes, the fifth digit is the units digit
of the hours, the sixth digit is the tens digit of the hours, the seventh digit is
the units digit of the day of the month, the eighth digit is the tens digit of
the day of the month, the ninth digit is the the day of the week, and the
tenth digit is the month in hex.

On line 160, a carriage return (ASCII 13) is printed, returning the
cursor to the beginning of the display line. This keeps the display on one
display line rather than producing a long sequence of lines of output that
scroll by. On line 170 the program loops back to the CALL command.

The level 4 time-reading routine is located at 7329h=29,481d (see
box). This is in the higher area of the ROM, where other low-level, machine-
dependent routines are also located.,

Figure 5-6. Row time and date data

126 Hidden Powers of the TRS-80 Model 100

1908
119
1Eg
1ae
146
154
1682
178
189
iga
LGB

Routine: Read Time and Date — Level 4
Purpose: To read the time and date from the clock chip
Entry Point: 7329h =29,481d

Input: Upon entry, the HIL register pair points to a ten-byte area of
memaory.

Output: When the routine returns, the raw time and date data are
in the ten-byte area of memory.

BASIC Example:

CALL 28481 :9 +H

Special Comments: None

We have a BASIC program that illustrates this level as well. It sets up a
string to store the raw time and date data, calls the level 4 routine to dump
the raw time and date in this string, and then prints out the raw data.

©LEVEL 4 TIME AND DATE READING
T sii i i
T VARPTR{TS)
H = PEEK{T+1)+28G#PEER{T+2)
CALL ZB481.:¢:H
FOR I = H w0 H+3
PRINT PEEK{I);
BEXT I
PRINT
GOTHO 15¢

LI B

This program is a combination of the previous two programs. On lines
120-140, it sets up the string T$ for storage. On line 150, it calls the level 4
time and date reading routine. On lines 160-190, it prints out the raw data.
On line 200, it loops back for more.

First the level 4 routine strobes the read command into the chip by
putting the value 3 into the A register and calling the clock command
routine at 7383h =29, 571d (discussed in the previous section). [n response
to this command, the chip does the parallel transfer from the time and date
counters to the forty-bit shift register.

Next the level 4 routine strobes the serial transfer command into the
chip by calling the clock command routine again, this time with 1 in the A
register. Now the system is ready to read the time and date bit by bit.

Hidden Powers of the Real-Time Clock

127

Each bit of the time and date is obtained by capturing bit 0 of port
BBh=187d. The IN BBh command gets the byte into the A register, the A
register is shifted one place to the right to put the bit into the carry flag,
and the contents of the carry is shifted into the D register with three more
instructions. After each bit is read, the shift register 1s shifted by strobing
the data clock (bit position 3 of register B9h = 185d). This strobe is accom-
plished by moving a byte into register BGh = 185d that has a zero in bit
position 3; then a byte that has a one in this bit position is moved into this
same port. The data bits from the shift register are collected in groups of
four, one group for each of the ten digits of the raw time and date data.
After all the bits are read, a “no operation” command is strobed into the
chip by calling the clock command routine with zero in the A register. This
stops the serial transfer.

The Dale

The routine to “evaluate” the BASIC string variable DATE$ (see box)
works in much the same way as the TIME$ routine. It is located at
1924h =6436d. 1t calls a tevel 2 date routine and stores the resulting string
in the appropriate place.

Routine: Read Date — BASIC Command (Level 1)
Purpose: 'Io read the date from the clock chip

Entry Point: 1924h =6436d

Input: None

Output: When the routine returns, the date is stored as a string
whose address is placed at location FB8Ah =64,394d. Some other
locations used in handling string variables are also affected.

BASIC Example:

CALL B43B

Special Comments: As with the TIME$ routine, every time this call
is made, a three-byte string descriptor is placed in memory, starting
at FB6Eh =64366d. This can be done only eight times before BASIC
runs out of room and declares a ST (string too complex) error.

128 Hidden Powers of the TRS-80 Model 100

1Rg
ii@
148
139
1449
1549
169
178
1889

2o
21
220
230
Z4
750
2B
270
780
289
308

Here is a BASIC program that exercises the level 1 date-reading routine.

It is almost identical to the level 1 time-reading program given previously:

the only difference is the address of the routine.

TEST LEVEL 1 DATE READING

ALl B436
¥O=PFER(B4393)
Mi=PEEK(G4394)+256%PEEK {43895}
HEaPFER{B4d208)+200%PEER {64387
¥ omPEERK{BA3G1) +25B8%PEERK{BABER)
FR=PEER (Y~
Zl=PEERA{Y-Z)+25B*PEER (Y~ 1)
PRINT USING "##"iX@3

PRINT USING "s#uasgss™ ixli

PRINT USING "sugsss®ixHZs

PRINT UBING "##mapat iy

PRINT USING "##" 31703

PRINT USING "se#szsz™iZ13

PRINT " "3
FOR I = Z£21 T4 Z1+7

PRINT CHRS&{PEEK(I)) 3
MEXT I

FRINT
GOTO 124

Since this is almost the same as the earlier program, we will not discuss
its structure.

The level 2 date routine (see box) at 192Fh =6447d calls the level 3
routine at I9A0h =6560d to read the time and date described above. Recall
that this routine puts the raw time and date data in a ten-byte area of RAM
starting at location F923h=63,779d. After this, the level 2 date routine
uses the raw data to create a string with the month, day, and year in ASCII
numerals separated by slashes. The month has to be dealt with in a slightly
different way than the other parts of the date because it is expressed in
hexadecimal notation rather than decimal.

Hidden Powers of the Real-Time Clock

129

199
114
iZa
1@
1da
15¢@
154
174

Routine: Read Date — Level 2
Purpose: 'Io read the date from the clock chip
Entry Point: 192Fh = 6447

Input: Upon entry, the HL register pair contains the address of an
eight-byte area of memory where the string will be stored.

Output: When the routine returns, the date string 1s stored in the
eight-byte area of memory.

BASIC Example:

CALL G447 .2 +H

where H points to an area of memory where the date string will be
stored.

Special Comments: None

Here is a BASIC program that illustrates the level 2 date-reading rou-
tine. It is the same as the one for the level 2 time-reading routine except for
line 150, where the level 2 date routine is called instead of the level ¢ time
routine,

* LEVEL 2 DATE READING

I

H i

¥ VARPTR{TS)

H PEEK(T+1}+256%PREEK(T+2)
CRLL G447 .9 H

PRINT T%

GATD 13@

T%

i H

130 Hidden Powers of the TRS-80 Model 100

The Day of the Week

There is also a routine to “evaluate” the BASIC string variable DAY$,
which returns the day of the week as a three-character string (see box). The
routine is located at 1955h = 6485d. It calls a level 2 day routine and places
the resulting string in the DAY$ variable.

Routine: Read Day of Week — BASIC Command
(Level 1)

Purpose: To read the day of the week from the clock chip
Entry Point: 1955h =6485d

Input: None

Output: When the routine returns, the day is stored as a string
whose address is placed in location FB8Ah = 64,394d. Some other
locations used in handling string variables are also affected.

BASIC Example:

CaLlL R4B3

Special Comments: Every time this call is made, a three-byte string
descriptor is placed in memory, starting at FB6Eh =64,366d. This
can be done only eight times before BASIC runs out of room and
declares a ST (string too complex) error.

The level 2 day routine is located at 1962h =6498d (see box). It calls
the level 3 time and date reading routine at 19A0h =6560d (described
previously). It then plucks out the numerical value tor the day of the week

from the raw tume and date data and looks at the corresponding three-byte
string in a table starting in the ROM at 1978h =6520d.

Hidden Powers of the Real-Time Clock

131

Routine: Read Day of Week — Level 2
Purpose: o read the day of the week trom the clock chip
Entry Point: 1962h = 6498d

Input: Upon entry, the HL register pair contains the address of a
three-byte area of memory where the string will be stored.

Output: When the routine returns, the day string is stored in the
three-byte area of memory.

BASIC Example:

CALL G498 :8.H

where H points to an area of memory where the day string will be
stored.

Special Comments: None

It1s easy to modify the level 1 and level 2 BASIC programs given for the
time and date so that they can work for the day of the week. We invite you
to do that yourself.

What Happens When You Set the Time or Date

10 set the time, date, or day of the week you must assign an appropriate
string expression to the corresponding variable. This happens when the
variable TIMES$, DATES$, or DAY$ appears on the left side of an equals
sign.

The Time

The BASIC routine to set the time (see box) is the reverse of the routine
discusseci_.*éibove to evaluate TIME$, The level 1 routine is located at
19BO=6576d. It checks for an equals sign following the TIME$ symbol.
Then it calls a routine at 1A42h =6722d (see box), which evalutes the string
expression on the right side of the equals sign, calls the level 3 time and
date reading routine to read the raw time and date data from the clock into
RAM starting at F923h=63,779d, and then replaces the time part of the
raw data by the appropriate new data. The level 1 routine finishes by calling
a level 2 time and date setting routine to place the modified raw data back
into the clock.

132 Hidden Powers of the TRS-80 Model 100

1ed
114
124
138
1448
134
164
1749
184

Routine: Set Time ~— BASIC Command (Level 1)
Purpose: o set the time on the clock chip
Entry Point: 19B0h=6576d

Input: Upon entry, the HL register pair points to a command line
containing a string expression that evaluates a time string.

Output: When the routine returns, the specified time is set in the
clock chip.

BASIC Example:
CALL 85376 :8 4

where H is the address of a valid time string.

Special Comments: None

Here is a BASIC program that shows how to use the level | time-setting
command. It contains an infinite loop that gets a time string from the user,
sends it to the time-setting routine, and then displays the new time using
the BASIC TIMES$ function to verity that the time has actually been set.
When you run it, be sure to type in the time in exactly the same format as
the Model 100 prints out the time.

fLEVEL 3 TIME SET

)

INPUT "TIME"3TS%
S=DHRE(ZZ1)+"TE"+CHRS{ &)

£ = UARPTR(G%)

H = PEEE{S+1}+Z36#PEER{E+Z)
CALL B378 9 M

PRINT TIMES

LOTa 1Ze

The main loop of this program extends over lines 120-180. On line 120,
the user inputs the time into the variable T$. On line 130, the time is
encased in a command line and stored in the variable S§. In lines 140-150,
the address of the string 1s computed and stored in the variable H. On line
160, the tme-setting routine is called. On line 170, the program verifies
that the time has been set by printing out the TIMES$ variable. On line 180
it loops back for another time.

Hidden Powers of the Real-Time Clock

133

Routine: Get Time String from Command Line
Purpose: o get the time string from the command line
Entry Point: 1A42h =6722d

Input: Upon entry, the HL register pair points to a command line
containing a valid time string.

Output: When the routine returns, the new raw time and date data
are stored in a ten-byte area in memory starting at F923h.

BASIC Example: Not directly applicable

Special Comments: This routine uses the stack and therefore cannot
be CALLed directly from BASIC.

The level 2 time and date setting routine is located at 7$2Ah = 20,482d,
in the high part of the ROM, and thus is considered a low-level, machine-
dependent routine. It shares much of its code with the level 4 time and date
reading routine at 7329h =29 481d (described previously). However, it first
strobes the serial transfer command into the chip (by calling the command
routine at 7383h =29,571d with 1 in the A register). Then it transfers each
bit of the time and date in through bit position 2 of port BYh =185d,
strobing the data clock (bit 3 of port BOh = 185d) each time. It inishes by
strobing the write command and then the no operation command into the

chip.

134 Hidden Powers of the TRS-80 Model 100

17@
184

The Date

The BASIC routine to set the date (see box) works in a similar way, It is
located at 19BDh = 6589d and calls many of the same routines.

Routine: Set Date — BASIC Command (Level 1)
Purpose: o set the date on the clock chip
Entry Point: 19BDh =6589d

Input: Upon entry, the HL register pair points to a command line
containing a string expression that evaluates to a date string.

Output: When the routine returns, the specified date is set in the
clock chip.
BASIC Example:
Call. B5B9:9 4
where H is the address of a valid date string.

Special Comments: None

Here is a BASIC program that shows how to use the level 1 date-setting
command. When you run it, be sure to type in the date in exactly the same
format as the Model 100 prints out the date. Because it is almost the same
as the level 1 time-setting program described earlier, we will not discuss it
in detail.

©LEVEL 1 DATE BET
INPUT "DATE"ITS
GE=CHRE(2Z1I+"TE+CHRS (D)
5 = UARPTR(E%)
H = FEEK{B+1)+Z5G+PEEK (842}
CALL G5B9 .8 .:H
PRINT DATES
GOTR iZe

Hidden Powers of the Real-Time Clock

135

The Day of the Week

There is also a BASIC routine to set the day of the week (see box),
located at 19F1h=6641d. You might want to modify the program above to
work for this DAY$ function.

Routine: Set Day of Week — BASIC Command (Level 1)
Purpose: 1o set the day of week on the clock chip
Entry Point: 19F1h=6641d

Input: Upon entry, the HL register pair points to a command line
containing a string expression that evaluates to a day string.

Output: When the routine returns, the specfied day of the week is
set in the clock chip.

BASIC Example:
CALL BE41 @H

where H is the address of a valid day string.

Special Comments: None

BASIC Time Interrupt Commands

BASIC has certain commands that allow you to make your portable
computer into a fancy alarm clock or a controller for lab equipment. These
commands are ON TIMES$..GOSUB, TIME$ ON, TIME$ OFF, and TIME$
STOP. They control a BASIC interrupt that is triggered by the time of day.

The ON TIMES$...GOSUB command allows you to specify a time and a
BASIC subroutine that you want called at that specified time. The routine
to handle this command starts at location 1BOFh = 6927d {see box). It calls
a subroutine at IAFCh =6908d (see box) that sets the time for the interrupt.
This subroutine calls a routine at 1A42h =6722d (described previously) to
get the time from your BASIC command line and transform it into raw
form. Then it calls a block-move routine at 3469h=13.417d (see box) o
transfer it into a six-byte area of RAM starting at F93Dh =63,805d. In the
next section we will see how the clock-cursor-keyboard background task
continually examines this six-byte area, looking tor a match with the current
time,

136 Hidden Powers of the TRS-80 Model 100

Routine: ON TIME$...GOSUB — BASIC Command
Purpose: 'lo set the ON TIMES$ interrupt
Entry Point: 1BOFh=6927d

Input: Upon entry, the HL register pair contains the address of the
end of a command line for the ON TIME$ command.

Output: When the routine returns, the location of the ON TIME$

subroutine and the time that it should be executed are loaded into
BASIC.

BASIC Example:

CALL 88278 M
where H is the address of the end of the ON TIME$ command.

Special Comments: None

Routine: Block Transfer

Purpose: To transter bytes from one location to another location in
memory
Entry Point: 3469h=13,417d

Input: Upon entry, the B register contains the number of bytes to
be tranferred, the DE register pair points to the source location, and
the HL register pair points to the destination location.

Output: When the routine returns, the bytes have been transferred.
BASIC Example: Not applicable

Special Comments: This routine is used many times throughout the
Model 100’s ROM.

The ON TIME$...GOSUB routine finishes by getting the location of
the BASIC line specified after the GOSUB. It puts this location into a two-
byte RAM location starting at F948h = 63,816d. This is part of a three-byte
area of RAM starting at F947h = 63,815d, which stores information about
the tirme interrupt.

Hidden Powers of the Real-Time Clock

137

The routines to handle the TIME$ ON, TIME$ OFF, and TIME$
STOP commands all start at 1AASbh =6821d. Here the HL register is set to
point to the first byte of the three-byte area of RAM starting at
FO47h =63,815d, which stores information about the time interrupt. These
routines call a routine at JAEAh=6890d, which in turn branches to indi-
vidual routines to handle ON, OFF, or STOP (sce boxes). These routines
are also used to control other interrupts such as the ON KEY$ interrupts,
which will be discussed in the next chapter.

Routine: Interrupt ON — BASIC Command
Purpose: To enable the interrupt
Entry Point: 3FAGh = 16,288d

Input: Upon entry, the HL register pair contains the address of the
three-byte mterrupt table.

Output: When the routine returns, the interrupt is enabled.
BASIC Example:
CALL 1BZ88,:9:H

where H is the address of the three-byte interrupt table.

Special Comments: None

Routine: Interrupt OFF — BASIC Command
Purpose: o disable the interrupt
Entry Point: 3FB2h = 16,306d

Input: Upon entry, the HL register pair contains the address of the
three-byte interrupt table.

Output: When the routine returns, the interrupt is disabled.
BASIC Example:
CALL 18366 ,9H

where H is the address of the three-byte interrupt table.

Special Comments: None

138 Hidden Powers of the TR5-80 Model 100

Routine: Interrupt STOP — BASIC Command
Purpose: 'Io stop the interrupt
Entry Point: 3FB%h = 16,313d

Input: Upon entry, the FIL register pair contains the address of the
three-byte interrupt table,

Output: When the routine returns, the interrupt is stopped.
BASIC Example:

Call 18313:0 M

where H is the address of the three-byte interrupt table.
Special Comments: None

The first byte of this interrupt storage area (at F947h=63,815d) is
called the “interrupt status byte”. Three of its bits are used to manage the
ON TIMES$ interrupt. Bit 0 tells whether the interrupt is on or off, bit 1 tells
whether the interrupt is stopped or not, and bit 2 tells whether the interrupt
has occurred. There are six values that this byte normally takes on, depend-
ing upon the values of these bits (two more values are possible but never
actually occur). Each value represents a state for the system with regard to
the ON TIMES$ interrupt. These states form a “finite state machine” (see
Figure 5-7). This term is used by computer scientists to describe a system
that has a finite number of states and a set of possible “transitions” between
these states. It is a usetul concept for understanding everything from the
basic electrical circuits that make up a computer to the workings of pro-
grams like a sophisticated text editor. Computer scientists use diagrams
such as the one in Figure 5-7 to help them visualize the workings of such
systems.

Let’s look at the various states of this “interrupt machine” in more detail.
There are three primary states: 0, 1, and 5. A value of 0 (all bits off)
indicates that the interrupt is off (cannot cause any action). A value of 1 (just
bit 0 on) means that the interrupt is on but has not yet been “triggered”
(the clock has not yet reached the time specified for the interrupt). A value
of 5 means that the interrupt is on and has actually been triggered. When
this happens, we say that the interrupt is pending.

For each of these three primary states there is a corresponding “stopped”
state. In the stopped states, interrupts are “remembered” but not acted
upon. A value of 2 indicates that the interrupt is off and stopped. A value

Hidden Powers of the Real-Time Clock

139

of 3 indicates that the interrupt is on but stopped. A value of 7 indicates
that the interrupt has been triggered but is stopped.

The TIME$ ON, TIME$ OFF, and TIME$ STOP commands, as well
as the actual triggering and processing of the ON TIME$ interrupt, cause
state fransitions within this finite state machine. For example, if the system
is in state O (off), then the TIME$ ON command will cause it to move to
state 1 (on). TIME$ OFF, on the other hand, causes the system to move to
state 0 (off), no matter what state it was in previously. The arrows in the
state diagram show all possible state transitions.

The ON part of the TIMES$ routine (described previously) is located at
3FAOh = 16,288d; the OFF part is located at 3FB2h =16,306d; and the

Figure 5-7. Finite state machine for interrupts

14¢ Hidden Powers of the TR5-80 Model 100

STOP part is located at 3FB9h= 16,313d. In addition, thére is a routine at
3FD2h=16,338d (see box), which adjusts this finite state machine each
time an interrupt is triggered, and a routine at 3FF1h=16,369d (see box),
which adjusts the state each time the interrupt is processed.

Routine: Trigger Interrupt
Purpose: 'To trigger the interrupt
Entry Point: 3FD2h = 16,338d

Input: Upon entry, the HL register pair contains the address of the
three-byte interrupt table.

Output: When the routine returns, the interrupt is triggered.
BASIC Example:

Call. 153380 4

where H is the address of the three-byte interrupt table.

Special Comments: None

Routine: Clear Interrupt
Purpose: 'Io clear the interrupt
Entry Point: 3FF1h=16,369d

Input: Upon entry, the HL register pair contains the address of the
three-byte interrupt table.

Output: When the routine returns, the interrupt is cleared.
BASIC Example:
CALL 1B3GBY .0 »H

where H is the address of the three-byte interrupt table.

Special Comments: None

Hidden Powers of the Real-Time Clock

141

Besides manipulating the interrupt status byte at F347h=63,815d,
these routines maintain an “interrupt counter byte” at F654h =63,060d.
This byte is incremented each time state 5 (interrupt pending) is entered
and decremented each time it is exited (turned oft, stopped, or processed).
Unlike the status byte at F947h =63,815d, this byte is shared with other
BASIC interrupts such as the ON KEY, ON COM, and ON MDM inter-
rupts. Thus this byte counts the total number of BASIC interrupts of any
type that are pending in the computer. In Chapters 6 and 7 we will examine
other BASIC interrupts.

The Clock-Cursor-Keyboard Background Task

The clock-cursor-keyboard background task helps maintain certain basic
functions in the Model 100 computer. These include updating the clock,
blinking the cursor, and scanning the keyboard. All these jobs must be
performed very often; that is, several times a second to several times a
minute. Fortunately they do not take much time to perform; thus, they do
not appreciably slow down the main (foreground) tasks that the computer is
asked to do.

The clock-cursor-keyboard background task involves the real-tirne clock
in two ways. First, the clock drives the background task, causing it to be
performed about 256 times a second; and secondly, the clock is read every
125 times that the background task is called, or about every half second.
This is done to support the ON TIMES} interrupt. The clock part of the
background task also maintains the autornatic power-off feature and the
year part of the date.

Generating the Interrupt

The timing pulse from the clock is initialized at 6CEBh=27,883d in
the warm start reset routine (see Chapter 3), which sends a command code
5 to the clock chip (via the clock command routine at 7383h=29,571d,
described previously. This causes the clock chip to pulse at a trequency of
256 times a second, or about once every 4 milliseconds.

The timing pulse is fed into the interrupt 7.5 input pin on the 3085
CPU. This CPU interrupt can be selected using the SIM instruction and
enabled and disabled using the EI and DI instructions. In general, the SIM
command is used to tell which of three interrupts (5.5, 6.5, and 7.5) will be
enabled with the EI (enable interrupt) instruction. If the 7.5 interrupt is
enabled, a timing pulse will cause the CPU to stop what it is doing and call
the routine at 3Ch=60d (see Chapter 3). In the Model 100, location

142 Hidden Powers of the TRS-80 Model 100

3Ch=60d has some code that disables interrupts and jumps to
1B32h=6962d, where the beginning of the clock-cursor-keyboard back-
ground task is located. Fach time interrupt 7.5 is actuated, it must be
rearmed before it can be used again. This is done by the routine at
765Ch = 30,300d (see Chapter 4), which uses the SIM command to turn
off and rearm the interrupt. This routine was mentioned in Chapter 4 on
the LCD.

The code for the background task comes in three major sections — one
for the clock, one for the cursor, and one for the keyboard. We have already
discussed the section for the cursor in Chapter 4, and we will discuss the
section for the keyboard in Chapter 6. We will now discuss the section for
the clock (see box).

The clock-cursor-keyboard background task begins at 1B32h = 6962d
and consists of several subsections.

Routine: Clock Section of Background Task

Purpose: 1o update the system time for the ON TIMES$ interrupt,
maintain automatic power off, and update the year.

Entry Point: 1B32h =6962d

Input: None

Output: System time and timing parameters are updated.
BASIC Example: Not applicable

Special Comments: None

The “Very Often” Routine

Before doing anything else, this task calls a routine located in RAM at
F5FFh=62,975d (see box). Normally, a RETurn instruction is located there,
so nothing much happens, but if you place your own routine there, it will
be called “very often”. This “very often” routine can be used to run your
own background task in addition to the background task that is already built
into the computer. Each execution of the “very often” routine corresponds
to one “tick” of the background task.

Hidden Powers of the Real-Time Clock

143

144

Routine: Very Often

Purpose: To perform one tick of a background task
Entry Point: F5FFh=62,975d

Input: None, as it stands

Output: None, as it stands

BASIC Example:

CAaLL B28973

Special Comments: None

The bytes at F5FFh =62,975d are some of the RAM locations that are
initialized when the machine is first turned on. Initially, a RETurn followed
by two NOP instructions is placed at F6FFh=62,975d. To install your own
“very often” routine replace these three bytes by a JuMP or CALL instruc-
tion to a routine that you have placed somewhere else in memory.

A stopwatch program is an example of a way the “very often” routine
can be used. Such a program could be written in machine language and
CALLed from BASIC. The main stopwatch program would set up a varia-
ble in memory for a count and use its own “very often” routine to increment
this variable each time it is called. This “very often” would then count the
ticks of the system clock (256 times a second). The main stopwatch program
would have to monitor some keys on the keyboard (see Chapter 6) to tell
when to zero the count, start and stop the count routine, and report the
results.

Some Housekeeping

Let’s contine the discussion of the Model 100’s built-in background task.
Right after the “very often” routine is called, the HL, DE, BC, A, and Flags
are pushed onto the stack. This is because the background task is run as an
interrupt routine and therefore must return with the contents of the GPU
registers as they were upon entry. Note that if you install your own “very
often” routine, you must make sure that it, too, does not modify any registers.

The next action of the background task is to allow certain interrupts
and block others with the SIM command. These are 7.5 (the background
task itself), which is blocked; 6.5 (the serial communications line), which is
allowed; and 5.5 (the bar code reader), which is blocked. To do this, the A
register is loaded with 00001101 binary before the SIM instruction is exe-

Hidden Powers of the TRS-80 Madel 100

F:uted. The 1 in bit 3 indicates that the SIM command is being used to select
interrupts; bits 2, 1, and 0 select the interrupts, as indicated above.

The Clock Section

The clock part of the clock-cursor-keyboard background task now starts.
It begins by decrementing a counter (located at F92Fh=63,791d) that
causes the clock section to be executed about every half second. This works
as follows: if the counter does not become zero, the clock section is skipped
and the CPU goes onto the next (cursor) section of the background task.
However, if the counter reaches zero, the CPU continues into the rest of the
clock section, resetting the counter to 125. Since the interrupt happens
about every 4 milliseconds, the cycle length of this process is about half a
second.

If the rest of the clock section 1s executed, another counter (at
FO30h =63,792d) is decremented. This counter is reset to 12 each time it
reaches zero, giving a six-second timing cycle to the section of code imme-
diately following. This particular code takes care of the Model 100’s auto-
matic power-off feature.

The Automatic Power Off

'Io conserve battery power, the Model 100 has an automatic power-off
feature. Normally, if the machine is left alone and it is not running a
program, it will shut oft after about ten minutes. Fortunately, the R/L\M
memory stays on even when the automatic power-off shuts down the rest of
the computer, so you will never lose any work because of this feature.

~ The automatic power-off code starts at 1B4Eh =6990d. It checks to see
if you are running a BASIC program by looking at the current line number
(stored at F67Ah =63,098d). If this variable is not — 1, it assumes you are
running a program and renews the power-off timer counter (at
F631h=63,025d) by calling a routine at 1BB1h=7089d (see box). The
initial value for the count is stored in ¥657h = 63,063d.

Hidden Powers of the Real-Time Clock

145

Routine: Renew Automatic Power-Off Timer
Purpose: To reinitialize the power-off timer

Entry Point: 1BB1h=7089d

Input: None

Output: When the routine returns, the contents of location
F657h=63,063d (the full count) are moved to location
F931h =63,793d (the counter).

BASIC Example: Not applicable (happens while BASIC is running
anyway).

Special Comments: None

The power-off timer counter is decremented each time the automatic
power-off code is executed. Since this code is executed about every six
seconds or every tenth of a minute, and since the default count value is 100,
the default time for power-off is about ten minutes. If the counter is already
zero, it is not decremented, and the CPU is sent on past the power-off code.
This is designed to handle the case when the user disables the power-off
feature with the command POWER CONT.

Location F932h = 63,794d is used to tell the rest of the system when the
power should be turned off. If the power-off timer actually decrements from
1to 0, location F932h = 63,794d is set equal to — }. The main input routine
of BASIC (in particular at 1358h = 4952d) examines this location and turns
off the power if it becomes nonzero. The actual code to turn off the power
is at 143Fh=5183d.

Detecting the ON TIME$ Interrupt

After the automatic power-off code, the raw time and date data from
the clock are read into a ten-byte area of memory starting at F933h =63,795d.
The low-level time and date routine at 7329h = 29,48 1d, which we discussed
earlier, is used. -

Next the current time raw data are compared with the time that was
specified by the last ON TIME...GOSUB command. If there is no match, it
proceeds; otherwise, it calls a routine at 3FD2h = 16,338d (described pre-
viously) to further handle the time interrupt. This routine is part of the
finite state machine and thus operates upon the time interrupt status byte
at F947h = 63,815d and the interrupt counter at F654h =63,060d, causing
them to indicate that the ON TIMES$ interrupt has just been triggered.

146 Hidden Powers of the TRS-80 Model 100

Updating the Year

The next section takes care of updating the year. It gets the month from
where it was just stored by the low-level time and date routine. It puts this
it location F655h=63,061d. If the value is less than or the same as what
was previously stored there, the routine proceeds; otherwise, it increments
the year stored at F92Dh = 63,789d and FO2Eh = 63,790d.

Finally, the clock section checks the optional I/O and jumps to the cursor
section.

Summary

I this chapter, we have explored the operation of the real-time clock
and the routines that control it. Among these are routines to set and read
the time of day, the date, and the day of the week. We have also studied
routines to control the ON TIMES$ interrupts. Finally, we have studied the
background task, which performs a number of functions that have to be
performed very often. These include handling the automatic power-off
feature, updating the time for the ON TIMES interrupt, updating the vear,
and performing other tasks such as cursor blinking (see Chapter 4) and
keyboard scanning (see Chapter 6).

Hidden Powers of the Real-Time Clock

147

