- Christopher L. Morgan : -

Christopher 1. Morgan is a professor at California State University,
Hayward, where he teaches mathematics and computer science, in-
cluding computer graphics, assembly language programming, com-
puter architecture, and operating systems. Dr. Morgan has given talks
and authored papers in pure mathematics and on representations of
higher-dimensional objects on computers. He is director of the com-
puter graphics lab at Hayward and is a member of @ number of profes-
sional associations, including the American Mathematical Society, the
National Council of Teachers of Mathematics, and the Association for
Computing Machinery. He is coauthor along with Mitchell Waite of
8086/8088 16-Bit Microprocessor Primer and Graphics Primer for the
{BM® PC. He is the author of Bluebook of Assembly Language Routines
for the 1BM® PC and XT.

HIDDEN POWERS

OF THE TRS-80°

MODEL100

by Christopher L. Morgan

awg 10
oo JUN L7 0

A Plume/Waite Book
New American Library .
New York and Scarborough, Ontario

NAL BOOKS ARE AVAILABLE AT QUANTITY DISCOUNTS WHEN USED TO PROMOTE
PRODUCTS OR SERVICES, FOR INFORMATION PLEASE WRITE TO PREMIUM MARKETING
DEVISION, NEW AMERICAN LIBRARY, 16353 BROADWAY, NEW YORK, NEW YORK 10019,

Copyright © 1984 by The Waite Group, Inc. All rights reserved. For information address New American
Library.

Several trademarks and/or service marks appear in this book. The companies listed below are the owners
of the trademarks and/or service marks following their names.

Digital Research Inc.: CP/M

Intel Corporation: Intel

Microsoft: MBASIC

MicroPro Internationazl Corporation: WordSuar

Tandy Corporation: TRS-80 Model 100 Portable Computer

REGISTERED TRADEMARK — MARCA REGISTRADA

@ PLUME TRADEMARK REG. U.S5. PAT. OFF AND FOREIGN COUNTRIES
HECHO EN WESTFORD, MASS., US.A.

SIGNET, SIGNET CLASSIC, MENTOR, PLUME, MERIDIAN and NAL BOOKS are published in
the United States by New American Library, 1633 Broadway, New York, New York 10019, in Canada by
The New American Library of Canada Limited, 81 Mack Avenue, Scarborough, Ontario M1L1M8
Cover design by Michael Manwaring

[Hustrations by Winston and Karen Sin

Trpography by Walker Graphics

First Printing, November, 1484

123456789

PRINTED IN THE UNITED STATES OF AMERICA

Contents

Acknowledgments vii
Preface viii

1 Exploring the Model 100

Overview of the Model 100 1
Peeking Inside the Model 100 4
Notes on Using This Book 16
Summary 18

2 The Model 100's Hardware

‘Why Study Hardware? 19

Hardware Overview 20

The 80C85 Central Processor 22

The System’s Buses 24

ROM and RAM 26

Port Decoding 28

8155 Parallel Input/Qutput interface Controller 31
Special Control Port 33

wPD 1990AC Real Time Clack 34

6402 Universal Asynchronous Receiver Transmitter 34
tiquid Crystai Display Screen 34

Keyboard 35

Printer Interface 35

Summary 37

3 Hidden Powers of the ROM

The Interrupt Entry Points 41

The BASIC Interpreter 51

The TELCOM Program 69

The MENU Program 71

The ADDRSS and SCHEDL Programs 77
The TEXT Program 78

The Initiclization Routines 80

The Primitive Device Routines B1
Summary 81

4 Hidden Powers of the Liquid Crystal Display

How Liquid Crystal Displays Work 82
How to Program the LCD 88

ROM Routines for the LCD 91
Summary 114

5 Hidden Powers of the Real-Time Clock

How the Real-Time Clock Works 116

The ROM Routines 121

The Clock-Cursor-Keyboard Background Task 142
Summary 147

19

38

82

115

6 Hidden Powers of the Keyboard .~ 148 Acknowledgments

How a Scanning Keyboard Works 148

How to Program the Model 100 Keyboard 149 There are a number of people I would like to thank for their valuable

Descriptions of ROM Roufines 153 o help in making this book possible. _
The Clock-Cursor-Keyboard Background Task 156 ' At the Waite Group, Robert Lafore has provided support, encourage-
&;ﬁ?’bou{génpm Rodfines 163 ment, guidance, and feedback which made my job at l‘east an order of
K magnitude easier; Lyn Cordell has done a superb job in managing t.he
7 Hidden Powers of the Communications Devices 169 o production of the book; and Mitchell Waite initiated and oversaw the entire
) . - . o operation. _) .
How 0 85232 S Commurcaton lne Wors 170 { would lke 1o thank my wife Carol and my children Elzabeth and
The ROM Routines for the Communications Devices 174 o Thomas for their patience with me while I worked on this book.
Dialing the Telephone 180 o
Reading from the Serial Communications Line 185
Writing to the Serial Communications Line 191
Summary 195
8 Hidden Powers of Sound 196

How Sound Works in the Model 100 196
The ROM Routfines For Sound 198
Summary 202

9 Hidden Powers of the Cassette 203

How the Cosseite Interface Works 203
The ROM Routines for the Cassette System 205
Summary 217

Appendices 218

A. BASIC Function Addresses 218

B. BASIC Keywords 219

C. BASIC Command Addresses 223

D. Operator Priorities for Binary Operations 225
E. Some Numerical Conversion Routines 224

F. Binary Operations for Double Precision 226
G. Binary Operations for Single Precision 227
H. Binary Operations for Integers 227

. Error Codes 228

J. BASIC Error Routines 229

K. Control Characters for the Model 100 230

L. Routines for Escape Sequence 231

M. Special Screen Routines for the Model 100 233
N. LCD Dato for Character Positions 234

O. ASCII Table for Regular Keys 237

P. ASCIl Table for NUM Key 241

Q. ASCH Table for Special Keys 242

Index 243

vii
vi Contents

Preface

Ris book is for anyone who wants to understand the inner secrets of
the TRS-80® Model 100 portable computer. It will be equally useful to those
who need to learn about the Model 100 in particular and to those who want
to increase their general understanding of computers. This book and the
Model 100 will provide a new world of fascinating study, and they’ll both fit
in your briefcase!

The Model 100 is the first of a new breed of lap-size computers that
have launched a revolution in the way computing is done. No longer are we
chained to our desks by a heavy machine requiring a wall plug and cumber-
some peripherals. Now we can slip a full-fledged computer into a briefcase
and take it with us on the airplane, to a client’s office, or to a construction
site.

Hidden Powers of the TRS-80® Model 100 reveals how this amazing ma-
chine works, on a level seldom glimpsed by the casual user or programmer.
Using simple, down-to-earth language, this book explains the computer’s
hardware and the built-in software that make the Model 100 so powerful
for its diminutive size.

Who Can Profit from This Book

viii

If you are a programmer looking for ways to enhance your programs —
to give them professional polish and speed — this book will show you how
to use the powerful undocumented routines built into the Model 100’s Read
Only Memory. These routines can-be accessed from either assembly lan-
guage or BASIC; this book shows you how. Accessing these routines directly
will make your programs more powerful and versatile. For instance, you will
learn how to perform selective scrolling (scrolling only a few lines of the
display), how to shift the display to “reverse video” (white on black) for
special effects, and how to dial the telephone directly from BASIC.

If you are a programmer, learning how such hardware devices as the
Liquid Crystal Display and keyboard work will enable you to perform tasks
that are ordinarily impossible, such as setting up real-time displays of com-
plex data or detecting any number of keys pressed simultancously on the
keyboard. Uses for such techniques include the simulation of instrument
panels and other machines, both for games and for more serious programs.

If you are a hardware designer who would like to market a peripheral
device for the Model 100, you will find it essential to know how the M()Qel
100’s hardware works and how it interfaces with the outside world and with
the built-in software. This book will tell you what you need to know in order
to design equipment that will work successfully in the Model 100 environment.

Finally, you may simply be curious about how computers work. Hidden
Powers is written in a simple, jargon-free style. Anyone w%qo has some famil-
iarity with programming should be able to understand i, and it can open
up a whole new area of exploration for someone who is learning gbf)ut
computers. You'll find that the computer is not a'51.mple .dum!) beast waiting
for your typed-in program. Instead, itis a surprxsmgiy 1.r1telhgent and com-
plex machine that will reward your study and investigation.

Because many of the principles and chips used in thfa Mgdei 100 are
common to other computers as well, this in-depth investigation w1ll‘heip
you to acquire an understanding of computers in general: The tlechmques
and information presented in this book are similar, except in detail, to those
you would use to investigate most other modern computers.

What You Need to Know to Use This Book

Any programmer who is familiar with a higher-level language such as
BASIC should be able to profit from this book. The general explanations of
the hardware and of the built-in ROM routines require no knowledge of
assembly language. Many of the routines described can-be czfllled directly
from BASIC programs. Also, example programs are given in BASIC so
that you can experiment with the operation of the hardwar.e. -

Use of the disassembler program for further investigation of the Model
100’s built-in ROM routines will require some knowledge of 8085 assembly
language and of the hexadecimal numbering system. 1f you have access to
a CP/M® system, a good book for learning about 8085 as§emb1y E.anguagc is
Soul of CPIM, by Mitchell Waite and Robert Lafore (Indianapolis: Howard
Sams & Co. Inc., 1983).

What's in This Book

The first few chapters in Hidden Powers provide some tools an(:'l back-
ground. You'll need these to understand the more detaii.ed explanations of
the individual components of the Model 100 that follow n later chapters.

Chapter 1 gives an overview of the Model 100, a quick once-over of the
various elements that make up its hardware and software. Th_en some pro-
gramming tools are introduced. The most important of these i1s a disassem-

Preface

ix

bler. This program, written in BASIC, permits you to dig into the Model
100’s ROM, to explore its every nuance and detail. In subsequent chapters,
Hidden Powers provides entry points to and explains the use of all the most
common ROM routines. With these as starting points, you can use the
disassembler to investigate individual routines and determine exactly how
they work. Other BASIC programs are provided to display key areas in the
ROM routines and to search for specific patterns in the Model 100’ Memory.

Chapter 2 provides a detailed look at the architecture of the Model 100.
"The 80C85 Central Processing Unit is examined first, followed by the bus
structure and the chips that handle input/output operations. If you are
unfamiliar with computer hardware, you will find that this chapter opens
the door to a new and fascinating world,

Chapters 3 through 9 investigate individual components of the Model
100: memory, display, real-time clock, keyboard, communications devices,
sound, and cassette system. For each of these subjects the hardware is
explained first. Then the ROM routines that control the hardware are
explored in detail. Entry addresses and parameters are summarized for
these routines so that BASIC and assembly language programs can call
them directly.

Throughout these chapters short BASIC programs allow you to gain
easy “hands on” experience with particular parts of the machine. These
example programs should make many aspects of the Model 100’s operation
accessible even to those who are not assembly language programmers.

When you finish Hidden Powers, you'll have a thorough, detailed under-
standing of the Model 100 and its operation. If you have never investigated
a computer in such depth before, you'll find that a fascinating new world
has been opened to you. No longer will you be at the mercy of the incom-
prehensible “mysteries” in your computer: you'll have the technique and the
knowledge to dig in, explore, and understand what's really going on in the
Model 100 or almost any other computer system.

Preface

Exploring the Model 100

Eis chapter introduces the TRS-80 Model 100 Portable Computer,
points you to the appropriate written material, and provides the essential
software tools that will start you toward understanding the operation of the
Model 100. There is also a discussion of the major features of this book,
including its boxes describing the ROM routines and its programs written
in BASIC.

The techniques and much of the information presented in this chapter
and in the rest of the book will carry over to other computers, not only from
Radio Shack but from other companies as well. This is because most micro-
computers are organized on the same basic principles and use many of the
same chips.

Overview of the Model 100

Let’s take a quick look at the major features of the Model 100 to get our
bearings before we make our first explorations into its inner structure,

The TRS-80 Model 100 Portable Computer is a truly remarkable piece
of engineering, Itis the size of a notebook, yet it is a full-fledged computer
with facilities to perform the three major tunctions of modern information-
handling systems: computing, text entry, and communications.

The 64K bytes of memory space in the Model 100 are divided into two
halves. The lower 32K bytes consist of ROM (Read Only Memory), and the

upper 32K bytes contain RAM (Random Access Memory). You may have
less RAM than this in your particular Model 100.

‘The Model 100’s ROM houses its built-in programs. In Chapter 3 we
will explore the entire contents of the ROM. Remarkably, the entire 32K of
ROM is located on one chip.

The RAM contains user files (programs and text files) and the data
needed to run the operating system. Not all 32K bytes of RAM need to be
installed. The basic model comes with 8K bytes, and you can add more
RAM in 8K increments until you fill the entire 32K bytes of available space.

"The Model 100 uses a master menu to tie all its functions together. The
master menu displays the names of the various programs and data files
stored in the system. The file system resides entirely in the RAM and ROM
memory of the computer, providing quick and easy access 10 a wide range
of functions, features, and modes.

Unlike the situation with many computers, when you turn off the Model
100 in the normal manner (using the switch on the right side of the ma-
chine), the information in RAM is not lost. Thus both RAM and ROM
behave like permanent memory, making secondary storage techniques such
as cassette tape and disk not as vital as in many computers. You can store
your favorite BASIC and machine-language programs in the main memory
as long as you need them.

The file directory is stored in RAM, and the files it lists can be in either
ROM or RAM. The Model 100 has five ROM files and as many as nineteen
RAM fles. Since the information in RAM does not disappear when the
Model 100 is turned off, it makes sense to have this many RAM files active
in the system at once. We will study the master menu and its directory in
Chapter 3.

The programming power of the Model 100 comes from its Microsoft®
BASIC interpreter. BASIC is the first item on the master menu, The BASIC
in the Model 100 has the same syntax as the BASICs that come with most
personal computers. However, because of size limitations, it is missing a few
teatures. For example, there are no user-defined functions written in BASIC.
Also, because of the memory-based file structure, saving and loading files
is somewhat different — in some ways, better — than on disk-based systems,
in that files are automatically updated as you work on them.

"The code for the BASIC interpreter is contained in the first part of the
Model 100s ROM. BASIC keeps its working data (variables, pointers, and
buffers) in the highest part of memory, which is RAM. BASIC programs
are stored throughout the rest of the Model 100’s RAM along with other
files (see Figure 1-1). In Chapter 3 we will explore the inner workings of the
BASIC interpreter. You will see how BASIC interprets command lines, and
you will learn where routines to perform all commands are located.

2 Hidden Powers of the TRS-80 Mode! 100

A

T

The Model 100 has its own built-in text editor, called TEXT. This is the
second entry in the master menu. The code for TEXT is contained in' ROM .
above the code for BASIC. TEXT stores its variables and other kinds of
working data in high memory in the same areas that BASIC uses for this
purpose. In Chapter 3 we will also discuss how the TE?(T program works,

A program called TELCOM allows you to move files (:(;mv_enlently.be»
tween the Model 100 and other computers. The code for TELCOM resides
in ROM, above the code for BASIC and below the code for TEXT. TEL-
COM uses the RS-232C serial port and the modem to send and receive files.

Variables

Figure 1-1. Memory map of BASIC

Exploring the Model 100 3

In Chapter 7 we will discuss these devices in detail, seeing how to program
them directly, and in Chapter 3 we will examine the TELCOM program
itself.

The Model 100 contains two other ROM programs, SCHEDL and
ADDRSS. We will see how they fit into the scheme of things in Chapter 3.

"The Model 100 has a wide variety of input and output devices, including
a Liquid Crystal Display, a keyboard, a modem, an RS8-232C serial port, a
sound generator, a tape cassette interface, a printer interface, and a bar
code reader interface. In Chapter 2 we will see how these various devices
are arranged within the Model 100, and in Chapters 4 through 9 we will
study many of these devices in detail.

Peeking Inside the Model 100

Now let’s see how to find out what’s going on inside the Model 100. In
this section yow’ll learn how to get the Model 100 itself to tell vou how it
works by running BASIC programs on it.

Besides the Model 100 itself, two key sources of information about the
machine’s inner workings are the TRS-80% Model 100 owner’s manual and
the Radio Shack® Service Manual for the Model 100, The owner’s manual
comes with the computer, and the Service Manual is available through Radio
Shack stores and computer centers. A third source of information is the
data sheets published by chip companies such as Intel, whose specifications
and designs are used for some of the chips in the Model 100. These data
sheets are compiled in books such as the Component Data Catalog from
Intel®, available through their Literature Department as well as from some
computer stores and electronic parts stores.

Memory Display

Let’s begin exploring the Model 100 by writing a stmple BASIC program
that will display the contents of its memory. This display is a siruple memory
dump that shows the contents of the Model 100 as decimal values and as
ASCII characters. Each line of output from this program displays six bytes
of memory. This is the maximum number of bytes that can be displayed in
this format. In each line the address of the first byte comes first, followed by
the decimal value for each of the six bytes and finally by their corresponding
ASCII characters. If a byte contains a control code such as carriage return,
lincteed, or bell, a space is substituted for the character so that the display
will not be affected.

4 Hidden Powers of the TRS-80 Model 100

* DECIHMAL/ASCIT DUMP
FOrR I = @ 7O 32787 SQTEP B

* ADDRESS o
PRINT USING "##sss"ilj
PRINT " ®j

¢ DECIMAL BYTES
FOR ¥ = @ 10 B . .
PRINT USING "sses” jPEERK(I+K]J

NEXT K
PRINT * "3

£ A5CI1 CHARACTERG
FOR K = @& TO o
¥ o= PEEK(I+K} aND 127
IF <32 THEM ¥=3Z
PRINT CHR$(X)s
NEXT K

PRINT
NEXT 1

Looking at the program in detail, you can see that it consists of a FOR
loop with index I that ranges from 0 to 32767, the entire length of the ROM.
The STEP size for this loop is 6, corresponding to the fact that six bytes are

isplayed per line. -
‘ SpOz lini 140 the address of the first byte of the line is d_isplayed. I'he
PRINT USING statement formats the address to ensure that it always takes
up the same number of spaces on the screen. _ . ‘

On lines 190-210, a FOR loop displays the decimal values qf six bytes of
memory. The PEEK function is used to fetch the contents of' these bytes,
and the PRINT USING command is used to ensure that their values ap-
pear evenly spaced on the screen. “

On lines 250-290, a FOR loop displays the ASCI1I syrpbols correspond-
ing to the same six bytes. On line 260, the PEEK_fu_nctton gets the value
from memory. The value is ANDed with 127 1o lelmmate (make zer.o) the
highest bit from the byte. Sometimes this bit Is sct (set to one) in the
computer’s memory to indicate when a character is the last letter of a name.
We want to display characters as though the highest bit were not set; cher—
wise, we will get erroneous graphics characters when the highest bit is on.
On line 270, the program checks for control codes and replaces them by the
value 32, which is the ASCII code for a space. If we left the control codes

Exploring the Model 100 5

1Z¢

10d
118
1Z2a
134
14@
158
1G9
17@
18@
194
208

alone, the display would get messed up every once in a while, On line 280
the character is printed out using the CHR$ function. ’

Run this program now to see what’s in the Model 100’ memory. Starting
at location 128, you should see the keywords corresponding to BASIC’s
commands. This is the first step in understanding how and where BASIC
works. Notice that each keyword begins with a bgzte that has a high value
(sec the decimal values for these bytes). In fact, the numerical code for the
initial letter of each keyword is equal to the ASCII code of the letter plus
the value 128. This is the result of turning on (setting to 1) the highest bit
of the byte. You can guess that BASIC uses this fact when it searches
through this list of keywords.

After you run this program as it is, you can change the limits on line

120 and run it to explore other areas of memory. For example, if you look

at high memory, you might discover where the directory is stored. Try
replacing line 120 by:

FOkR I = B3B42 TO B4139 STEP &

You should recognize the filenames in your directory as they go by. In

phapter %, we'll show you a program that does a much better Jjob at display-
ing the directory.

BASIC Keywords

Now let’g look at BASIC's keywords in detail. The keywords form a
complete guide to BASIC's commands and functions. Almost every BASIC
command begins with a keyword that identifies the action to be done. An
command that doesn’t start with a keyword is assumed to be 2 LET com}:
mand; thus, even the commands that do not begin with a keyword have one
assumed.

Here’s a program that displays the ke in tabular for ists
127 BASIC keywords, rlumhelf")edyfrom 0 t}gvl(g((;ls bl form. st al

© COMMAND TABLE

!

FOR I = 128 TO 5@7

XK=PEEK{I)

I[F H<128 THEN 190

PRINT

PRINT USING "aus"jK;

K=k+1

PRINT " "3

PRINT CHR$ (X AND 127)3
NEXT 1

6 Hidden Powers of the TRS-80 Medel 100

The program loops through all the characters from location 128 to 607
(see line 120). You can find these limits by running the previous memory
dump program. On line 130, the ASCII code of the character is fetched
from memory. On line 140, the program in effect looks for values greater
than or equal to 128, indicating the beginning of a keyword. If it finds such
values, lines 150-180 are executed. 'They number the output lines. The
variable K keeps track of the numbering. On line 190, the individual char-
acters of the keywords are printed out.

The table produced by this program does several things. First of all, it
gives a complete list of the keywords, even the ones that are not documented
in the manual because they are not supported by Radio Shack. Second, it
provides an ordering or numbering for the keywords. In Chapter 3 we'll see
how this numbering is used to index into tables that give the address of the
routines to execute BASIC commands and functions.

The Disassembler

The next step in our investigation of the Model 100 is to write a disassem-
bler. A disassembler is a program that converts the raw machine language
in the computer into assembly language that we can read. In this section we
give a listing for a disassembler that is written in BASIC. This disassembler
provides a window into the ROM, allowing us to see exactly how the Model
100 handles each command and controls each of its devices. Each routine
discussed in this book will be identified by its address and a name. When
you enter the address, the disassembler program will display the assembly
code that starts there. You can use the key to stop and start the
display from the disassembler as you read through the discussion in this
book. You can use the (SHIFT } (BREAK } keys to terminate the program so
that you can start it up at a new address as the discussion shifts to a new
location in the ROM.

When you run this program, it will ask you for a starting address and
then an ending address. Both of these addresses must be entered as four-
digit hexadecimal numbers. Each address in this book will be given in
hexadecimal as well as in decimal representation so that you can always
enter it directly into the disassembler program.

Once the starting and ending addresses have been entered, the program
starts displaying the assembly-language equivalents of the machine lan-
guage stored in the memory between these addresses. For each machine-
language instruction the program will display a single line on the screen.
On this line you will see the address of the first byte of the instruction, then
the name (mnemonic) of the instruction, and finally any operands (data or
address of the data).

Exploring the Model 100 7

S8@ 7 SUBROUTINE ~- HEX WORD TO DEC
S99 =0

de@ FOGR K=1 70 4

419 G=RASCIMIDS(I%:K 1)) ~440

A2¢ IF G:»8 THEN $=G-7

439 Jd=1B%+G

A few words of warning about using any disassembler are in order. Not
all of a computer’s memory is filled with machine language. Even the ROM
contains tables of data. If you try to disassemble memory locations that do
not contain machine language, you will get nonsensical assembly language
as your output. Generally, this is pretty easy to recognize when it occurs,

and you can run the disassembler to find out where the various tables are 444 NEXT K

located in ROM. However, it is often difficult to determine the exact place A58 RETURN

where machine language ends and data begins or vice versa. In particular, igg : MAIN PROGRAM
when your first address falls in the middle of a CPU instruction, the first 480

tew lines of output will often be incorrect.

You should type in the disassembler program and save it in your Model
100. You can save it as a RAM file, but you should also back it up by saving
it on cassette tape or on the optional disk drive, or by uploading to another
computer where it can be saved on disk.

Here is the disassembler.

498 DIM C8(238) L{Z36)

9@ FOR I=¢ TO Z55:READ CE{I)}:NEXT I
S1@ FOR I=6 TO Z253:READ L{I1TeNEXT 1
SZe

S3% INPUT "STARTING ADDREGE:"31%

ad¢ GO05U8 3B@:T1=J

0@ INPUT "ENDIMG ADDRESE 1" il%
B0 GOBUB 3B@:I1Z=Jsl=11

182 * PROGRAM DISASSEMBLER 5@ ¢

Lie sB¢ ¢ TOP OF MAIN LOOPR

129 ¢ THIE PROGRAM DISASSEMBLES 0@ GOSUB 210 ¢ MEY WORD

13@¢ 7 MACHINE CODE. WHEN THE GA0 PEH="H"+I$+" "

14e * PROGRAM SIGNS 0N, oig !

15¢ * SPECIFY A STARTING ADDRESS 570 ¢ GET FIRST BYTE

16@ ° AND AN ENDING ADDRESS, BR3¢ MoPEEK (I):T=I+1:Ps=Ps+I¢ ()

178 7

gdg IF Lix)=0 THEN 784¢
LBEg

BEe 7 GET SELCOND BYTE
H7@ A=FEERK{I}:I=1I+1
58¢ GOSUB 219:V4$=R%
e IF LiXy=2 THENW 739
7R@ PE=PS+"BY"+YVS

7ie GOTd 78

e

7A@ 0 GET THIRD BYTE
7A@ A=PEER{I):I=1+1
7o GOSUD Z1@:P8$=Ps+"H"+AH%+Y
Tee

186 CLEaR Zoaad

igd GOTO 474 7 GOTa MAIN PROGRAM
g

218¢ 7 BUBROUTIME -- MEXADECIMAL BYTE
JE@ RI=INTIA/1B} UPPER DIGIT

23¢ RIA-RZ2#18 * LOWER BIGIT
L4897

250 RE=RZ+48:IF REZHTT THEN RZ=RIZ+7
ZEQ As=CHRS(RZ)

Z7% Ri=R1+48B:IF R1X57 THEN Rls=R1+7
250 A%=A%+CHR$S (R

S8¢ RETURHM

~

sSa@ ! ~ y FI@ 7 OPRINT THE LINE
gi@ © SUBROUTINE ~- HEXADECIMAL WORD 78@ FRINT P%

Wl Jd=
330 UZ=INT{I/259B):01=1-02+258
dde A=072:G05UB Z18:1%=4%

358 A=01:008U5 219:1%=1%+A%

=1
goag ¢ EXTRA LINE FOR JMP OR RETY
giéd IF X< x19% AND X<:Z01 THEN 85H@

35 §20 Pg=" ;"
359 RETURN 830 PRINT P%
370 sae

8 Hidden Powers of the TRS-80 Model 100 Exploring the Model 100 9

834 ¢ LOOP BALK Moy ELC"

134¢@ DATA *MOy E.B" s
B¢ IF T+I2 THEN STOP 13%@ DATA "MOV E.D"."MOY E.E"
879 GOTO So@ 1368 DATA "MOY EH" ."MOU E,L"
880 1378 DATA "MOV E .MU, "My EA"
BOp THE DATA SECTION 1383 DATA "MOY H:BY . "MDY H,ov
SEQ DATA “NOPY, CLKD B 1380 DATA "MOV H.D®,"HOU H,E"
gie DATA "5TAX B", "IN® A 1HEE DATA "MOU HH®s"MOU H.L"
g28 DATAS "INR BY "RCR B" 14A1@ DATA YMOW H.M""MOV H.A"
938 DATA "MMT B.", "RLC™ LAZP DATA "HOU LSBT .UMOY LSCT
Gda DATA -t "DAD B 1470 DATA MOV L D" «"HMOW L E"
a5@ DATA "LDAXY B", "DCY B 1T44F DATA *HMOY LaH" s"MOWV L sLL"
850 DATA “INR C", *OCR C" 1458 DaTa "MOV LMY "pOyY LAY
970 DATA fHMUE Dty "RRCOY 1450 DATA "HMQOQV M.B",,"MOY .00
988 DATL M., LMD DY 1473 DATA "MOU MLDU LPMOY MGE™
g9@ DATHA "STaX D",y "IN® D 148G DATH YHOY MsH" MO M.LY
189@ DATA "INR D¥, "DCR D" 1493 DATS "HLT®, PEOY O MAY
121 DATA "MUI Ds*, "RaL 1RAR DATA "MOV A:B*,,"MOUV 4,07
102@ DATA "= ‘DAR DT 1512 DATA "MOU ASD*,"HOU ALE"
1838 BATA "LDAX D', "pCx D" 1570 DATA "MOW AsH" . "MOU ALY
1049 DATA "INR E"s ®DCR E" 1530 DATA "HOU AM" MOV AAT
1850 DATE "MYT E+ s "RARY 134¢ DATA "ADD BY . "abh C*
Ldh@ DATA "RIM", "W Hm 155%@ DATAH "ADD DY, aDD E"
1876 DaTaA "SHLD #, "IN H" 156 DATA "ADD H® TR
1988 DATA "INR H"; "OCR H*® 1978 DATA “AaDD M™ "Aabh A"
1099 DATAH "MYT H"y "DAAR" 1584 DATA "abc B", "aADL C*®
1199 DaTA "=, "DAD M" 159¢ paTA "ADC D" “ADC EF
1119 DATA "LHLD ", DCX H® 1EH8 DATA "ADRC H": annoL”
1129 DATaA YINR LV "DER LT 18518 DATA "“ARC MY ADC AM
113@ DATA *MYI L:", "CHA® 15728 DATS "SUB B" "s5ug C
Tidet DAaTaA "SIM©" "LEI BPsn 1B3& DATA "s8UB D", tHus E"
1154 DATA "STA U, "INK Sp" 1849 DATS "SUB H" ., “sus L
116é@ DATA "INR ®HM", "OCR Mo 1ES0 DAaTa "SUB MY "sUB A"
117@ DATA "MYI M.", "gTQo iGE0 DATA "SBB B*, “GBB L
1188 DaTha "=, “DAa0D sp" 1B7@ DATA *8BB LY. "SpE E"
1199 DATA =LDa =, "DCX spr iGE® DATO *S88 H® ., "SBE L
1288 DATH "INMR A", "GCR A" 1B9® DATA “SBB MY "GBB A"
TZ21@ DaTa "PUL a.", “OMee 1788 DATA "ANA B" "HANA CF
1229 DATA "ROY BB ,,"MDOV B,C 1719 DATA "ANA D" TANA EF
123¢ DATA "MOY 8,D"."MOY B,E" 1772 DATA "amMa H"Y PANA LT
1246 DaTA "MOYW BM"*MOY B.L® 1738 DATL "ANA MY TANA A"
1258 DATA MOV B.M", MOV B.A" 1748 DATA “"HRA BY e FA T
1268 DATA *MOY C.B:"MOY C.0oo 175¢ DATA "HARA BY. "HREA E"
L27@ DATA MOV D" ,s"pMOY C,2v 1763 DATA "HRA HY" "HRa LY
12849 DATAS "MOY CsH®""MDOYV C,L" 1770 DATA "HRA M" THREA O AM
1298 BATA "MOY LM, "HMOU C.a" 1780 DATA "0ORaA B". "GRA CO
130¢ DATA "HOW DLB":"MOY D.C" 1790 DATA "0ORA DY "ORA E"
1319 DaTaA "MOV D,0".2MOW DEY 18a0 DATA "ORS HBY "ORa LY
1329 DATA »MOY DH" "HMOY DL 1818 DATA *0ORA M™ ., "ORA AM
133¢@ DATA MOV DM s"MOY D40 1873 DATAH YOCHMP B, “CHP C

10 Hidden Powers of the TRS-80 Madel 100

Exploring the Model 100

N

1838 DATA "CHMP DV "CMRB E"

-

231 DATA @818

1948 DATA "CHMPR H", "Cpp L*® 5329 DATA @.0.2 .0
183¢ RATA "CHMP M", "CMP A" 7338 DATA Q:8:1,0
1BBE DATA "RNZ", “PGE BT I347 DATA 0:8:0:8
1878 DATA ".INZ ", L ?35¢ DATA G:2:0.8
1884 DATA “CNZ " “PUSH B" ZRARS DATA @+G:0,0
1898 DATA "ADI " "RET @ 7378 DATA §:+G:0.9
1949 DATA “"RZ". CRET® PABS DATA 2:0,0,9
19t@ DATA "JZ v, L) F300 DATA B+0.0,0
192@¢ DATA "CZ " "CALL. ZAGE DATA @:0:0:9
193¢ DATA "ACI " "RET LM ZH19 DATA @:0:0:0
1942 DATA "RNEC" . SEOR DM 2A29 DATA ©:0:0,9
195@ DATA “JIND " “out ! 2440 DATA @:8,0,9
196@ DATA "CNLC ", "PUSH D" SHED DATH D0 .0 0
197¢ DATA *SUI ", "RST 2° ZASE DATA G:+0:0,0
198@ DATA “RLY., e 7460 DATA Q8,00
193¢ DATA “J0 " CIN SATD DATA G0 0 0
z@@d DATA "CC " et 24890 DATA @:0.040
018 DATA “HBI *, “RST 37 TA90 DATA @+0:0 0
ZRZO DATA "RPOY, TPOP M 250 DATA @.8,0.9
2030 DATA “UPG 7 CATHLY TH10 DATA G,0:0.9
@49 DATA "CFO ", TPUSH R 25790 DATA B+0:0:0
2050 DATA "ANI ., “RST 4 2530 DATA B:0,0:0
2060 DATA "RPE®: TROHL TEAG DATA O :0:0,0
270 DATA "JPE ", PHEHGY TEEA DATA @00 4+0
J¢89 DATA "CPE " vt 569 DATA 0:0:0,:0
ZeA0 DATA "RKRI ", "RET 5" 2570 DATA G:+0.:0:0
100 DATA "RE", FPOP PEMWT PEAG DATA (0,00
211@ DATA "JF % TpIY 2599 DATA 2:0:0.:0
212@¢ DATA "CP v, "PUSH PSH" FRAD DATA O+G,0.,0
138 DATA "ORI ", “RST B" G110 DATA 01000
2140 DATA "RM" ., "GPHL SB20 DATA 018 +0,90
Z15@¢ DATA "4M ", ”Eﬁ” TER0 DATA 0:9:0:0
21B@ DATA "CHM" . te TRAG DATA 0+ :0.:+0
Z17@ DATA "CRI " fRET 7 THSG DATA D0 :0,0
TIBQ DATA 070 +0 “EED DATA @877
219¢ DATA §:8:1.0 TE7Q DATA 20 +1:0
CEPe DATH d.,0,0.,8 TEEG DATS B .8.72.0
FZ1@ DATA 9.0 .1 .08 ZEOG DATO Z.7:1.0
2220 DATA 0:2:0+0 STAD DATE D971
TESG DATA 9,016 710 DATA Z2:94+1:0
FTAD DATA 9.0 :0.0 2720 DATA D407 1
2258 DATH @,0:1 0 270 DATA T30 +1:0
ZEGD DATA @.2,2.0 STAQ DATH 0.0 .20
2279 DATA @,2,1.0 2750 DATA 2:0:1:0
2289 DATA B.:0:7 0 2EED DATO @ .0,7 .0
2284 DATH B.0.1,0 2773 DATA Z:0:1.:0
2309 DATA @220 2780 DATA & :0:7 +8

12 Hidden Powers of the TRS-80 Model 100 Exploring the Model 100 13

279
2800
81
Z8Z@
2838

BATA Z2:8.1 8
DATA @ :,0,Z .8
DATA 2@ 0

ks

END

Let’s look at the program in detail. As you can see, most of the listing
consists of DATA statements. Lines 900-2170 contain the mnemonics for all
the CPU instructions, and lines 2180-2810 contain the number of addi-
tional bytes required for each instruction. These are the bytes needed for
associated data or address information.

The first part of the program consists mainly of subroutines for con-
verting numbers between decimal and hexadecimal notation. The main
part of the program begins on line 470 and extends to line 870. The first
tew lines of the main part ot the program dimension and load the arrays C§
and L, which hold the mnemonics and the instruction lengths as stored in
the DATA statements. The next few lines (530-560) input the starting and
ending addresses for the disassembly. The subroutine at line 380 is called to
convert from hexadecimal to the normal decimal internal form for numbers.
Upon return, the starting value is stored in the variables T1 and I, and the
ending value is stored in the variable 12.

Line 580 marks the top of the main loop. Here the current address in
the variable 1 is converted into a hexadecimal value stored in the string 1§.
On line 600, the string P§ is defined to contain the beginning of the output
line. You can see that the output begins with the address of the instruction,
prefixed by an “H”. This makes each address into a label for the line of
assembly language. We used “H” to stand for hexadecimal address.

Next, the first byte of instruction is fetched into the variable X and
looked up in the lists C$ and L. The mnemonic in C$ is added to the output
string P§. If the instruction requires only one byte, then the program jumps
to the end of the loop, where the line is printed out.

1f there is a second byte, it is picked up. If there is no third byte, the
second byte is prefixed by a “BY” and added to the output string P$, and
then the program jumps to the end of the loop, where P$ is printed. We
used “BY” to indicate that the data is stored in a byte.

If there is a third byte, it is prefixed with an “H”, packed with the second
byte, and added to P$. This makes a label operand, perhaps matching one
of the “H” labels at the beginning of one of the other output lines of this
program. At the bottom of the loop, P§ is printed out in this case as well.

At the very bottom of the main loop, a check is made for JuMP or
RETurn instructions. Following these, we place an extra blank comment
line to make the code more readable.

14 Hidden Powers of the TRS-80 Model 100

guT

109
i1
129
130
14@
159
16@
178
18@

This disassembler program can be used to examine each routine that
we discuss in this book and to discover other routines as well. It can be
modified in a number of ways. For example, it can be changed to produce a
list of addresses referenced by the machine code together with the addresses
of the instructions where those references occur. These references can be
dumped into a file and sorted, giving a list of cross-references. From this
list you can find the key entry points and variables of the machine-code
programs.

Other BASIC programs can be written using the same hexadecimal
conversion subroutines. For example, it is easy to write a program that
displays the memory as a list of hexadecimal 16-bit words. This is useful for
displaying tables of addresses. For example, such a table containing the
addresses of the routines to handle all the BASIC commands starts at
location 80h=128d.

Searching for Special Patterns

From time to time it is important to find certain patterns in memory.
For example, you will see on pages 4-7 that output ports FOh = 240d through
FFh =255d are used for the Liquid Crystal Display screen. Hence the key
instruction for control of the LCD is:

POFT

where port is a number from FOh to FFh (240 to 255 decimal).

Let’s write a program that searches for all instances of this instruction.
I'he machine code for the QUT instruction i1s 211 decimal. Here is a short
program that prints out the address of each occurrence of the pattern: 211,
x, where x is a decimal number between 240 and 255.

* PATTERN SEARDCH
FOR I = @ TO 32767

W o= PEEK{I)
IF X¥<»211 THEN 180
Y o= PEERK(I+1)
IF ¥<248 THEM 1890
FRINT I

MEXT I

Exploring the Modef 100

15

The program consists of a FOR loop that ranges through the entire
ROM for address I from 0 to 32767 (see line 120). On line 130, the value
of the byte is fetched, and on line 140 it is checked to see if it is equal to
211, the code for the OUT instruction. The next part of the FOR loop is
skipped if a match is not made. If the match is made, the next byte is
checked. If it is not between 240 and 255, the next part of the FOR loop is
skipped. If this second byte value is between 240 and 255, the address I is
printed out and the loop continues.

When you run this program, you will discover that there are six locations
where this sequence occurs. In Chapter 4, when we study the LCD in more
detail, we will discuss how the machine language at these locations actually
programs the LCD.

This program can be easily modified to look for other patterns. For
example, you could change it to look for specified three-byte sequences.

Notes on Using This Book

Chapters 1 and 2 of this book are introductory, providing you with an
overview, guidance, and tools that you will need for reading and making
use of the rest of the book.

Fach of the remaining chapters (3 through 9} covers a major area of the
operation of the Model 100. These chapters start out with a general discus-
sion and then delve into a particular set of ROM routines.

The Boxes

Key information about major ROM routines is displayed in boxes. Each
box shows the vital statistics for one particular routine or block of code.

Each box begins with the name of the routine. Some routines have a
single word in capital letters as their name. These are the routines that are
described in documents and articles published by Radio Shack (see Radio
Shack publication 700-2245, Model 100 ROM Functions). Other routines
have names consisting of several words. These are not mentioned in Radio
Shack’s literature.

After the name comes the purpose of the routine. This s a short descrip-
tion of the major function that the routine performs.

Following the purpose is the entry point for the routine. This is the
address where execution of the routine begins. The entry address is given
in both hexadecimal and decimal form, as described below.

The input and output for the routine are shown next. These describe
how the registers and memory are used to pass data in and out of the
routine. Here we also often mention the physical /O devices that are involved.

Next, a BASIC example is given, if applicable. Normally this is in the
torm of a CALL command. The BASIC CALL command allows you to call
a machine-language routine, passing values to it via the A register and the
HL register pair. The CALL command does not allow you to read directly
into your program any data that might be stored in a register, such as the A
register. Because of these conditions, we have given BASIC examples just
for those routines that input data through only the A and HL registers and
do not output data through CPU registers.

Fach box ends with a spot for special comments. Here we place general
comments or warnings about using the routine.

Address Formats

As noted above, memory addresses are shown in both hexadecimal and
decimal format. For example, 646h = 1606d. Here the small letter “h”
following the 646 indicates a hexadecimal number, and the small “d” follow-
ing 1606 indicates a decimal number. Entry points and other addresses are
thus accessible both to the BASIC programmer, who needs addresses in
decimal, and to the assembly-language programmer, who normally works
in hexadecimal (as when using the disassembler).

Although some BASICs have built-in functions to use both decimal and
hexadecimal forms of numbers, the Model 100’s BASIC can work only with
decimal notation. We have also provided simple routines for converting
between decimal and hexadecimal, but you would not want to include these
routines in every program that CAlLLed a ROM routine.

BASIC Programs

In this book there are more than two dozen BASIC programs that you
can type in and run on the Model 100. You can store these programs as
RAM files and/or as cassette files on tape. Many people store such programs
by uploading them to a larger system, where they are saved on disk, or you
can use the optional Model 100 disk. The programs fall into three main
classes: tools, demonstrations, and applications.

Programs in the first category, tools, are presented in Chapter 1. Here
we have programs that dump, disassemble, and search memory.

The second category, demonstrations, 1s designed to give you a better feel
for the way particular features work. Sometimes we display key memory
locations that are affected by a process. Sometimes we show the direct
results of a software action upon some hardware. By running and modity-
ing these programs yourself, you should gain the deeper understanding that
is possible only through “hands on” experience.

16 Hidden Powers of the TRS-80 Model 100 Exploring the Model 100 17

. The third category, applications, somewhat overlaps the last category.
Applications programs demonstrate features and give useful and interest-
ing applications for machine language and machine-level features of the
Model 100. For example, we have included programs that interactively inter-
pret formulas, scroll selected lines of the LCD display screen, and automat-
ically dial a telephone number.

The Model 100's
Hardware

Summary

In this chapter we have discussed how this book is organized and how
to use it. We have also presented some basic program tools that can be used
in conjunction with this book. With these tools, you can better understand
this book and also extend your knowledge to areas beyond the scope of
these pages.

In this chapter we’ll explore the organization of the Model 100’s hard-
ware. We will begin with an overview of the entire internal structure and
then survey each of the major subsystems. Some of these subsystems are
represented by chips such as the 80C85 CPU, the 8155 PIO, the wPD 1990
clock, and the 6402 UART. Other systems such as the memory, LCD, key-
board, and printer involve combinations of chips and other components. We
will also study the buses that connect all of these subsystems together
physically and logically to form the Model 100 computer.

Why Study Hardware?

Before we plunge into the hardware, let’s talk about why it is useful for
a programmer to know about such things. The answer is simple: the hard-

18 Hidden Powers of the TRS-80 Model 100

ware is the stage upon which the software plays. The hardware physically
houses the software and gives it meaning. More explicitly, the machine-
language instructions of the CPU are part of the hardware, and without
them, the programs stored in the ROM and RAM are merely sequences of
numbers. This notion extends beyond the CPU. Each of the other major
chips, including the 8155 PIO, the pPD 1990 clock, and the 6402 UART,
can be programmed according to certain rules that involve sending bytes
out certain IYO ports. Without these rules, these byte sequences are mean-
ingless. To understand these rules, you need an understanding of the struc-
ture of the machine and its various subsystems. Thus, to understand the
software, at least at the machine-language level, you must understand the
hardware.

However, you should not take this to mean that you need to understand
every detail in this chapter in order to profit from the rest of the book. Much
of the material in this chapter will be relevant only in certain programming
situations. Thus, while you are reading this chapter you should not worry if
some aspects of the operation of the hardware are not completely clear. 'The
detailed descriptions of the ROM routines in future chapters will clarity
many points.

Fach chip in the Model 100 is fully described in the documentation
published by the company that designed it. For the programmable chips,
this includes all their programming rules. Much of this information is also
included in the service manual for the Model 100. We will present the
essential details of this material in this chapter.

Printer
interface

z
=
=
T
@
b3
@
=

Hardware Overview

We start with a map of the Model 100 hardware system (see Figure
2-1).

The CPU is the nerve center of the system. It controls the main bus,
which runs through the system like a spinal column, linking the various
subsystems to the CPU. Two devices, the bar code reader and the tape
cassette recorder/player interface, connect directly to the CPU.

The main system bus controls the serial communications lines through
the 6402 UART chip, the RAM and ROM, and the 8155 PIO chip. It also
helps to control and monitor the keyboard, clock, and LCD display. The
main system bus is terminated in a socket in a recessed area on the bottom
of the Model 100. A socket for the optional ROM is also here. This socket
can be used for other purposes as well, such as connecting the disk drive
and video interface.

Figure 2-1. Model 100 block diagram

20 Hidden Powers of the TRS-B0 Model 100 | The Model 100s Hardware 21

The 8155 PIO is the second main chip in the system. It contains a timer
and controls a second bus that we call the PIO bus. The PIO bus feeds
multiple signals in parallel to the keyboard, printer interface, and LCD
display. It feeds other signals to the sound system and clock. Thus, control
of all of these devices is channeled through the 8155 P10,

The 80C85 Central Processor

Now let’s study the individual subsystems, starting with the CPU.

The Model 100 uses a GMOS version of the popular 8-bit 8085 central
processor chip (hence the designation 80C85). To a programmer the CMOS
version of this chip behaves identically to the regular version. The only real
difference is in power consumption. Because of its low power consumption,
the CMOS version is able to run on battery power for many hours.

As a rule, low-power devices run slower than their high-power counter-
parts, However, much progress is being made in this regard. The CMOS
8085 in the Model 100 is driven at a clock speed of 2,457,600 cycles per
second. Although this is not as fast as most of the high-power versions of
the current crop of processors, it is significantly faster than the first versions
of its earlier cousin chip, the 8080. As a result, the Model 100 runs faster
than many of the larger microcomputers did a tew years ago.

"The 8085 chip differs from the older 8080 CPU chip in several impor-
tant ways, including its RIM and SIM instructions, additional interrupts,
internal clock circuits, and simpler power requirements. Except for the RIM
and SIM instructions, the 8085 uses the same machine language and the
same assembly-language mnemonics as the 8080. This overlap means that
there is a large base of information, software, and expertise available for
the 8085 CPU.

We are assuming that you already have access to books and manuals on
the 8080 or 8085, Therefore, this book will not present a detailed discussion
of these 8-bit microprocessor chips and how to program them.

Figure 2-2 shows the 8085 microprocessor’s internal structure. We will
discuss the major features of this diagram.

The internal structure of the 8085 CPU consists of cight major parts:
CPU registers, Arithmetic Logic Unit (ALU), timing and control, interrupt
control, serial control, bus interfacing, and instruction decoding.

The CPU registers each have their own “personalities”. We assume that
you have already been introduced to and understand these personalitics
from prior experience. Here is a quick overview of what you should know.
Registers A, B, G, D, E, H, L, and Flags are all 8-bit memory cells within
the CPU that can be combined into the following 16-bit register pairs: A/

22 Hidden Powers of the TRS-80 Model 100

R R e

Flags, BC, DE, and HL. Some CPU instructions work with registers as single
8-bit temporary memory cells, while others work with these register pairs as
16-bit temporary memory cells. The A register is used as an “accumulator”
for data; the HL register pair is used as a “pointer” into memory; the SP s
the Stack Pointer for pointing to the stack for storing data and return
addresses; and the PC is the Program Counter for pointing to the individual
bytes of the machine language for the CPU.

The Arithmetic Logic Unit (ALU) performs the 8-bit arithmetic and
fogic operations such as addition, subtraction, complement, AND, and OR.
It also performs shifting operations.

The timing and control section keeps the 8085 CPU humming along
and also provides timing and control signals for the rest of the computer.
The basic timing frequency is derived from an external crystal. The input
from the external crystal comes into the timing and control section, where

Interrupt Serial YO
control_

Instruction §
Regist

Instruction
decoder

Timing and conirol

Figure 2-2. 8085 microprocessor (internal structure)

The Model 100’s Hardware

23

it is used to derive the basic timing signal for the operation of the micropro-
cessor chip and the rest of the computer. For the Model 100, the crystal
oscillates at 4,915,200 cycles per second. The timing and control circuits
divide the crystal frequency by 2 to give the clock signal for the system. The
same signal is sent out of the CPU to control memory and 1/O access.

The interrupt control section interfaces the CPU to interrupt signal

lines coming from various devices in the computer. These interrupt lines
are called TRAP, RST 5.5, RST 6.5, and RST 7.5. In Chapter 3 we will see
how these lines are serviced by software routines. For now, you need to
understand only that if interrupts are enabled, a pulse on the TRAP line
causes the CPU to automatically branch to location 24h = 36d as though a
CALL 24h were suddenly executed. The RST 5.5, RST 6.5, and RST 7.5
lines operate in a similar manner, branching to locations 2Ch =44d,
%4h=52d, and 3Ch=60d respectively. The three RST interrupts behave
somewhat differently from the TRAP interrupt, however, in that the 8085
RIM and SIM instructions can selectively enable and disable them.

The serial control section connects the Serial Gutput Data (SOD} and
Serial Input Data (SID) pins to the CPU. These are serviced by the RIM
and SIM instructions. In Chapter 9 we will see how the cassette interface
uses these instructions to send its data in and out of the SOD and SID pins.

The bus interfacing section connects the main internal data and address
buses with the external data and address buses. Internally the 8085 CPU
has separate buses for addresses and data, but externally the data and the
lower eight bits are shared by the same eight pins coming out of the 8085
chip. Some “buffering” (temporary storage) and “multiplexing” (switching)
are done by the interfacing section.

The instruction decoding section is responsible for reading machine
code instructions as they come into the computer byte by byte from memory.
As they are being decoded, these bytes are stored in the Instruction Register
(IR). The instruction decoding section analyzes these bytes, using the var-
ious bit fields to determine what the CPU is to do, what data it is to use, and
where it is to put the results.

The System's Buses

The Model 100 has a bus system that includes power, control, data, and
address subbuses. Since most of the computer is on one board, the bus
structure is not absolutely well defined. However, there is & bus extension
socket that brings certain signals out of the computer in a very well-defined
manner (see Figure 2-3).

L
!

Power

The power bus carries the power needed to run the electrical compo-
nents in the system. There are four separate lines that help conduct power:
a ground line (GND) at O volts, a +5 volt line (VDD), a — 5 volt line (VEE),
and a line that carries voltage from the ni-cad battery (VB).

The voltage for the VDD and VEE lines is supplied by the four AA
batteries or the AC adapter if it is used. The regular power switch on the
right side of the Model 100 controls the power to these lines. The VDD line
supplies the power for most of the chips in the Model 100. The VDD and
VEE lines work together in certain circuits to produce voltages greater than
five volts as needed. For example, the RS-232, MODEM, and LCD arcuits
use both the VDD and VEE lines.

As mentioned before, the voltage for the VB line is supplied by the
rechargeable ni-cad battery. The memory power switch on the bottom of
the Model 100 controls the power to this line. The VB line supplies power
to the Model 100’s RAM chips and to the real-time clock chip. It keeps the
clock running and allows the contents of the RAM to be retained when the
main power is shut off.

VDD
GND ()
a1 O
AD3 (D
AD5 ()
aD7 ()
a9 ()
a1 ()
A3
A5
GND ()
wr () '
s0 ()
51}
Yo O
RESET ()
3 INTR iNTA (O
(O GrD GND ()
() RAMRST Ne O

) N Ne (O

Figure 2-3. Bus extension socket

24 Hidden Powers of the TR$-80 Model 100 The Model 100 Hardware 25

Of these power lines, only the ground and VDD lines appear on the bus
extension socket.

Contirol

The control subbus contains a variety of signal lines, including read and
write command lines for memory and I/Q), interrupt control, timing signals,
status, and reset control. We will not discuss these lines in much detail, since
they are not of great concern to a programmer as long as they do their job
properly.

Of the system’s control lines, the following appear on the extension
socket: RD, 10/M, ALE, CLK, A, INTR, RAM RST, WR, S0, S1, Y0,
RESET, and INTA. All but the A, RAM RST, and YO0 are standard signals
of the 8085 CPU. The A signal indicates when either reading or writing is
happening and is used by external RAM, if present. The RAM RST signal
is used to enable and disable any such external RAM. The Y0 signal is used
to select an optional O controller unit. YO is generated when ports
80h = 128d through 8Fh = 143d are selected.

Data

There are eight data lines in the data subbus. They are labeled DO
through D7, On the 8085 CPU, the data lines share the same pins with the
lower eight address lines (they are therefore labeled ADO through AD7 on
Figure 2-3). On the main circuit board, the data lines are separated from
the address lines.

The eight data lines appear on the bus extension socket.

Address

There are sixteen address lines in the address subbus. They are labeled
A(through A15. These lines are separated from the data lines on the main
circuit board, All sixteen address lines appear on the bus extension socket.

ROM and RAM

26

The ROM is implemented by one chip that is called by its model num-
ber: LH-535618. This chip has hiteen address lines, three control lines,
and cight data lines.

The fifteen address lines are connected to the lower fifteen lines of the
address bus. The sixteenth address line of the address bus is routed to one

Hidden Powers of the TRS-80 Model 100

of the control lines (Chip Select) of the ROM (see Figure 2-4). This ensures
that the memory cells in this chip occupy the lower 32K bytes of the memory
addressing space of the machine.

The data lines connect to the data bus, and the remaining two control
lines control the timing of address selection and data output.

The RAM is implemented by four chip packs, each co.ntainii‘lg 8K bytes
(see Figure 2-5). At least one of these chips must be installed for proper
operation of the computer, for the various built-in ROM programs ne_ed
some scratch storage. With just one chip pack installed, you have an 8K
RAM machine. By installing more chips you can have a 16K, 24K, or 32K
RAM machine. The chips are installed in high to low order in the address-
ing space of the 8085 CPU. “ _

" The RAM chip packs each contain four TC55188F-25 chips. Each of
these chips has eight data lines, three control lines, and eleven address lines.
This means that each chip contains two to the eleventh, or 2K, bytes of
RAM. The Chip Enable control lines are used to determine which chip is

1 CS (chip select)

4 Ald ~,

Al3
Al2

4 Al

Figure 2-4. Addressing the ROM

The Model 100’s Hardware

27

selected for a particular memory address. Logic on the main circuit board
converts address information from the address bus into the individual chip
enable signals. In particular, bit 15 of the address bus determines whether
or not the RAM is enabled at all, and bits 11 through 14 are decoded to
determine which of the possible sixteen (four packs of four) chips is selected
(see Figure 2-6).

Port Decoding

The 8085 CPU belongs to a family of processors that has two separate
addressing spaces, one for memory and one for I/O. For the 8085 CPU, the
memory addressing space has 64K bytes and the /O addressing space has
256 bytes. In the former case, sixteen bits are used to generate addresses,
and in the latter case only eight bits are used. For the 1/O space, the lower
eight lines of the address bus are used. A control signal in the control bus

Figure 2-5. RAM chip pack

28 Hidden Powers of the TRS-80 Model 100

determines whether the CPU is trying to access a memory address or an 1/
O address. The programmer controls the CPU in this regard by selecting
the appropriate machine-language instruction. IN and OU'T instructions
access the I/ space, whereas MOV, LDA, STA, LHLD, and SHLD instruc-
tions access the memory space.

The Model 100 uses a decoder chip to divide up the /O addressing space
into ranges for various devices (see Figure 2-7). This decoder chip takes the
upper four bits of the eight-bit I/O address and produces eight individual
control lines, YO through Y7. These control lines are then used to selectively
enable the various devices in the Model 100.

Let’s look at the decoding process in more detail. As this decoder chip is
configured, it has four input lines (consisting of three selection lines and
one enable line) and eight output lines (YO through Y7). If the enable line
is zero, then all outputs are zero. In this case, we say that the decoder is
disabled. However, if the enable line is equal to one, then the chip converts
a three-bit selection code placed on the selection lines into a pattern of
signals on the output lines, turning “on” the output line corresponding to

Decoder
(two chips)

Figure 2-6. RAM addressing

The Model 100's Hardware

29

the selection code and turning "off” all the rest. For example, if the three
selection lines form the binary pattern 000, then YO is selected (has the
value one) and the rest of the lines have value zero. If the three selection
lines form the binary pattern 001, then Y1 is selected and the others are
zero; and so on.

The port address lines A4, A5, and A6 are connected to the three
selection lines, and the port address line A7 is connected to the enable line.
Thus, if A7 is zero, all of the output lines Y0 through Y7 are zero; that is,
none of the outputs is selected. This happens if the address is less than
80h == 128d.

If the address is greater than or equal to 80h = 128d, then the address
line A7 has value one, enabling the decoder. In this case, the address bits
A4, A5, and A6 determine which of the output lines YO through Y7 is
selected.

The addresses from 80h to FFh divide into ranges depending upon the
values for bit positions A4 through A6 of the address. For example, the
range 80h = 128d through 8Fh =143d corresponds to the pattern 000 for
these bits, which selects Y0; the range 90h=]44d through 9F¥h=159d
corresponds to the pattern 001, which selects Y1; the range AOh=160d
through AFh = 175d corresponds to the pattern 010, which selects Y2; and
s0 on to the range ¥Oh = 255d through FFh=255d, which corresponds to
the pattern 111 and thus selects Y7.

Table 2-1 shows each addressing range, the control line it selects, and
the functions within the system that it enables.

] Enable

] Selection

lines

Figure 2-7. The port decoder

8155 Parallel Input/Output Interface Controller

The 8155 in the Model 100 is a CMOS version of the very powerful and
flexible 8155 multifunction chip. This chip has 22 parallel I/O data lines, a
timer, and 256 bytes of RAM (see Figure 2-8 for this chip’s internal struc-
ture). The Model 100 uses all the data lines and the timer but does not use
the RAM.

The 22 I/O data lines of the 8155 are divided into three /O ports with
eight lines in the first port (port A}, eight in the second (port B}, and six in
the third (port C). We shall see in subsequent chapters how these ports are
shared, in a very thrifty manner, by most of the input and output subsystems
of the Model 100. In particular, the keyboard, real time clock, LCD screen,
and printer all use some of these /O data lines.

On the Model 100, the ports on the 8155 P10 chip are assigned the port
addresses BOh=176d through BFh= 191d. This is because the 8155 chip
is enabled via the Y3 signal line from the main port decoder.

There are six ports used by the 8155 PIO. Each port appears twice
within the sixteen-port range assigned to the 8155. This is because one bit
(bit 3) of the port address is ignored.

Port 0 (at port addresses BOh = 176d and B8h = 184d) is used for con-
trol and status. When the port is written to, it is used for control. When it is
read from, it is used for status.

When port 0 is used for control, bits 7 and 6 are used to set the timer
mode as follows: 00 means no operation, 01 means stop the timer, 10 means
stop after the count has expired, and 11 means start the timer. Bit 5 is used

Table 2-1. Port addressing ranges and functions

30 Hidden Powers of the TRS-80 Model 100 The Model 100's Hardware 31

to enable or disable interrupts for port B; a value of 0 means disable. Bit'4. ~ -

is used to enable or disable interrupts for port A. Bits 3 and 2 are used to
define how the lines in port C are to be used as follows: 00 makes all six
lines into input lines, 01 makes all six lines into output lines, 10 makes half
the lines into output lines and half into control and status lines for port A,
and 11 makes half the lines into control and status lines for port A and halt
the lines into control and status lines for port B. Bit 1 is used to control the
direction of the data lines in port B, and bit 0 is used to control the direction
of the data lines in port A. A value of 0 means that the lines are used for
input, and a value of 1 means that the lines are used for output.

For the Model 100, bits 7 and 6 are changed to control the timer, but
bits 5 through 0 always stay the same. These last six bits form a six-bit
binary number, 000011b. This number specifies that all interrupts from
ports A and B are disabled, ports A and B are used for output, and all six
lines of port C are used for input. On the Model 100, ports A and B are

Figure 2-8. 8155 P10 (internal structure}

32 Hidden Powers of the TR$-80 Model 100

used to send control signals to various devices in the computer, while port
C is used to monitor the status of various devices.

When port 0 is used for status, bit 7 is not used, bit 6 tells it the timer is
running, and the other bits are used to monitor the interrupt and full/
empty status of ports A and B. The Model 100 never reads port 0 (addresses
BOh=176d and B8h = 184d) and therefore never uses this status port,

Port 1 (addresses B1h=177d and B9h = 185d) connects directly to the
eight data lines of port A. Port 2 (addresses B2h =178d and BAh = 186d)
connects directly to the eight data lines of port B. Port 3 (addresses B3h = 179d
and BBh = 187d) connects directly to port C.

Port 4 (addresses B4h = 180d and BCh = 188d) contains the lower eight
bits of the count for initializing the timer. Port 5 (addresses Bbh =181d and
BDh = 189d) contains the upper six bits of the count for the timer and two
bits that are used to set the timer mode. See Chapter 8 on sound for more
details on setting the timer.

Special Control Port

In addition to the control and status lines maintained by the 8155 P10,
there is a special control port that appears at addresses EOh =224h through
EFh=239d (see Figure 2-9).

Tor this port, bit 0 is used to select an optional ROM, bit 1 is used to
“strobe” data to the printer, bit 2 is used to "strobe” the real time clock, and
bit 3 is used to control the remote motor control for the cassette recorder/
player.

Figure 2-9. Special control port

The Model 100's Hardware

33

The term “strobe” means that the signal line is used to send a pulse that
locks the data being sent into the device to which it is being sent (printer,
clock, or whatever). The strobe pulse is given once the data has been placed
on the data lines and has settled down to a valid set of values.

wPD 1990AC Real Time Clock

The real time clock will be discussed in Chapter 5. We include its
internal structure here (see Figure 2-10).

6402 Universal Asynchronous Receiver Transmitter

The 6402 UART (Universal Asynchronous Receiver Transmitter) will
be discussed in Chapter 7. In that chapter we will see how the entire serial
communications subsystem works. We include its internal structure here
(see Figure 2-11).

Liquid Crystal Display Screen
The Liquid Crystal Display Screen will be discussed in Chapter 4. In

Figure 2-10. Real time clock {internal structure)

34 Hidden Powers of the TRS-80 Model 100

that chapter we will see how it works and how it connects to the 8155 1/O
data lines and to the main address and data buses,

Keyboard

The keyboard will be discussed in Chapter 6. In that chapter we will see
that the keys are laid out in a matrix that can be read using the data /O
lines from ports A and B of the 8155 and a special input port with addresses
EOh =224d through EFh=239d.

Printer Interface

Let’s finish this chapter with a quick discussion of the printer interface,
since it will not be discussed later.

The printer interface uses port A of the 8155 P10, the special control
port (addresses EOh=224h through EFh=239d), and bits | and 2 of port
C of the 8155 P1O chip (see Figure 2-12).

Receiver
timing
and
control

Transmitter

timing
and
control

Figure 2-11. 6402 UART (internal structure)

The Model 100's Hardware

35

Bits I and 2 of port C of the 8155 carry the busy/ready signal (nonir- SU“‘II‘HCII"Y

verted and inverted) from the printer. To send data once the printer is ready,
you send the data out port A of the 8155 and then change bit 1 of the
special control port from a value of zero to a value of one and finally back
to zero. This last action “strobes” the data to the printer. As we mentioned
previously, a “strobe” is a control signal that is used to load data into a
hardware buffer. In this case, the hardware buffer is in the printer.

In this chapter we have explored the major hardware features of the
Model 1060. We have seen that it uses a CMOS version of the 8085 CPU, a
member of a very popular family of chips. We have seen how the ROM,
RAM, and ports are constructed and controlled, we have explored the
multifunction 8155 chip, and we have quickly surveyed various subsystems
such as the LCD, keyboard, and real time clock. Many of these subsystems
have chapters devoted to them later in the book.

STROBE
GHND
PDC
GND
PD?
GND
PD2
GHND
PD3
GND
PD4
GND
PD5

GND
PDé
GND
PD7
GND

GND
BUSY
GND

GND
BUSY

Figure 2-12. Printer interface

36 Hidden Powers of the TRS-80 Model 100 The Model 100s Hardware 37

38

Hidden Powers of the
ROM

In this chapter we will explore the secrets of the Model 100’s ROM. We
will study the overall organization of the ROM and then look at specific
routines and tables that help run the BASIC, TELCOM, ADDRSS, SCHDI.,
TEXT, and MENU programs. The routines we study here will be those that
perform general management tasks rather than controlling specific devices.
The remaining chapters of this book will cover specific devices and their
associated control routines.

There are 32 kilobytes of ROM in the Model 100. In these bytes are
hundreds of useful routines that make the Model 100 a very powertul
computer. We will start from the beginning (address 0) and work our way to
the top of this ROM (address 7FFFh = 32767d) (see Figure 3-1).

At the lowest addresses of memory we find interrupt entry points. These
are a series of hardware and software entry points to perform fundamental
1/0 and syntactical tasks.

Figure 3-1.

Device
drivers

TELCOM

Layout of the Model 100’'s ROM

Hidden Powers of the ROM 39

Next comes the BASIC interpreter. BASIC extends through a large area
of ROM and includes areas for address and symbol tables, error handling,
command input, command interpretation, and execution of individual
commands.

The TELCOM program follows. It has routines that make the Model
100 into a terminal, including the ability to upload and download files. Next
comes the MENU program, which has routines that allow you to move the
cursor around the menu and dispatch to whatever program you select. The
ADDRSS and SCHEDL programs are next. These programs blend into the
TEXT program, which contains routines to manipulate the cursor and
perform various editing functions. The final areas (highest addresses) of
ROM contain initialization routines and primitive device control routines.

8085 microprocessor

[| TRAP

RST7.5
Hardware interrupts

[} RST 6.5

RST 5.5

Figure 3-2. The hardware interrupt signal lines

40 Hidden Powers of the TRS-80 Model 100

We have strictly followed the physical organization of the ROM memory
in this chapter in order to make the chapter easy to use as a reference guide
to the ROM. However, this leads to a “bottom up” approach, particularly in
studying BASIC. When you first read this chapter, you may want to start
with the section on running BASIC programs and then go back and scan
through the earlier sections as you need them.

The Interrupt Entry Points

The very lowest locations of ROM contain entry points for the 8085
CPU’s software and hardware interrupt routines. The Model 100 uses all
twelve of these special entry points. Eight of these are “called” by the one-
byte RST (ReStarT) instructions. The other four are activated by special
interrupt signal lines coming into the CPU from the low power detection
circuit, the bar code reader interface, the serial communications line, and
the real-time clock (see Figure 3-2).

Software Interrupts

Let’s start with the software interrupts. These are eight locations with
addresses that are even multiples of eight. Each one is called by one of the
RST instructions. The Model 100 has placed special routines in these RST
locations that in effect extend the instruction set of its 8085 CPU. For
example, RST 3 compares the DE and HL. register pairs (which would have
been a handy CPU instruction if Intel had included it in the design of the
8085 CPU).

The RST 0 entry point is at location) and can be considered both a
software and a hardware entry point. It is activated by the RST 0 instruction
(software) and the RESET switch (hardware) on the back of the computer.
The code at location 0 is a jump to location 7D33h=32,051d, where there
is a procedure to restart the Model 100 after it gets hung up.

Hidden Powers of the ROM 41

Routine: RST 0

Purpose: To restart the Model 100 and return to main menu
Entry Point: Oh=0d

Input: None

Output: The machine is reset.

BASIC Example:

Chatt @

Special Comments: None

The RST 1 entry point is located at 8h = 8d. Here there is a routine that
is useful in analyzing the syntax of BASIC commands. This routine com-
pares the next byte from the BASIC command line with the byte immedi-
ately following the RST 1. If the two bytes agree, it returns, continuing
execution right after the byte following the RST 1 instruction. 1f the two
disagree, it jumps to a routine that declares a syntax error and halts execu-
tion of the BASIC program.

Routine: RST' 1

Purpose: 1o compare next byte of machine-language program with
next byte of BASIC command line

Entry Point: 8h=38d

Input: Upon entry, the HL register pair points to a byte in memory.

Output: If the byte in memory matches the next byte after the RST
1 instruction, then the routine returns, continuing execution right
after the byte following the RST | instruction, If the two bytes
disagree, a syntax error is declared and BASIC returns to its input
mode.

BASIC Example: Not directly applicable

Special Comments: None

The RST 2 entry point is at location 10h= 16d. This jumps to location
858h=12,136d, where there is a routine that is also used in analyzing the
syntax of BASIC commands. This routine exarnines the next byte of the
command line. If that byte contains the ASCII code of a digit from 0 10 9,
the routine returns with the carry flag set. If not, it skips over spaces, tabs,
and linefeeds in the command line. It returns once it finds a byte that is not
one of these. If it finds a byte that is zero, it sets the Z Hlag. This usually
means “end of command line”.

Routine: RST 2

Purpose: o search for next byte of command, checking for zero
byte or decimal digit

Entry Point: 10h = 16d

Input: Upon entry, the HL register pair points to a byte position in
a BASIC command line.

Output: The routine skips over spaces and tabs in the command
line. It stops when it finds a byte that is not a space or a tab. It
returns with the value of this byte in the A register. If this byte
contains the ASCII code of a decimal digit (0 through 9), the routine
returns with the carry flag set. If this byte is zero, it returns with the
7 flag set.

BASIC. Example: Not directly applicable

Special Comments: None

42 Hidden Powers of the TRS-80 Model 100

The RST 3 entry point is at location 18h =24d. Here there is a routine
that compares the contents of the DE with the contents of the HL register.
1f they are equal, it returns with the Z flag set. If HL is less than DE, then
the carry is set. Otherwise it is clear.

Hidden Powers of the ROM

43

The RST 5 entry point is at location 28h =40d. 'This jumps to location
1069h = 4201d, where there is a routine that checks the data type of the

Routine: RST 3 _
expression currently being processed by BASIC.

Purpose: To compare two 16-bit integers
Entry Point: 18h=24d

Input: Upon entry, the register pairs HL and DE each contain 16-
bit integers.

Routine: RST 5

Purpose: To check the data type of the expression currently being
processed

Entry Point: 28h =40d

Input: Upon entry, the data type of the expression must be in
location FB65h =64,557d.

Output: Upon exit, the flags indicate the data type according to the
following rules:

Qutput: When the routine returns, the carry and zero flags are set
as follows:

Condition Flags

HlL < DE Cand NZ
HL = DE NCand Z
HIi. > DE NC and NZ

BASIC Example: Not applicable Data Type Flag Condition

Special Comments: None Integer Zero flag clear (NZ)
String Sign flag clear (P)
Single-precision real Carry flag set (C)

The RST 4 entry point is at location 20h = 32d. This jumps to location
4B44h=19,268d, where there is a routine to print a character on the LCD
screen (sce Chapter 4).

Double-precision real Parity flag set (E)

BASIC Example: Not directly applicable

Special Comments: None

Routine: RST 4
Purpose: To print a character on the LCD screen
Entry Point: 20h=32d

Input: Upon entry, the A register contains the ASCII code of the
character to be printed.

Output: The character is printed on the screen.
BASIC Example:

CaLL 32¥
where the value of X is the ASCII code of the character.

Special Comiments: None

44 Hidden Powers of the TR5-80 Mode! 100 Hidden Powers of the ROM 45

The RST 6 entry point is at location 30h =48d. This jumps to location
33DCh = 13,276d, where there is a routine that checks the sign of the
number currently being processed by BASIC.

Routine: RST 6

Purpose: To get the sign of the real expression currently being
evaluated

Entry Point: 30h = 48d

Input: Upon entry, a valid single- or double-precision real number
must be in BASICs accumulator (locations FC18h =64,536d through
FC1Fh=64,545d).

Output: The A register is used to return a result. If the real number
in BASIC’s accumulator is zero, the result in A is zero. If the real
number is negative, this result is — 1. If the real number is positive,
the resultis + 1.

BASIC Example: Not directly applicable

Special Comments: None

The RST 7 entry point is at location 38h = 56d. This jumps to location
7FD6h =32,726d, where there is a dispatch routine that uses a special table
of addresses stored in RAM (see Figure 3-3). This table is called the “hook”
table because it gives programmers a chance to insert their own routines in
strategic places in the ROM programs. In Chapter 4 we will see an example
of the way the RST' 7 instruction is used in the ROM programs.

The RST 7 routine uses the byte following the RST 7 instruction to look
up an address in a table starting at location FADAh = 64,218d in RAM. The
routine calls this subroutine and returns to continue execution right after
the byte following the RST 7 instruction. The first 57 addresses point to a
subroutine consisting of just a RE'Turn instruction, and the last 37 locations
each point to a routine that declares an illegal function error.

Routine: RST' 7
Purpose: 'To dispatch to routine in hook table
Entry Point: 38h =56d

Input: The byte following the RST 7 instruction is used as input
and must be between 0 and 56.

Output: The routine dispatches to the location whose address is at
location FADAD = 64,218d plus twice the value of the byte following
the RS'T' 7 instruction.

BASIC Example: Not directly applicable

Special Comments: None

46 Hidden Powers of the TRS-80 Model 100
Hidden Powers of the ROM 47

The TRAP entry point is at location 24h = 36d. It is activated when the
power circuit indicates a low-power condition. This entry point jumps to
location F602h, where the low-power condition is handled.

Hardware Interrupts

The four hardware interrupt entry points are located at 24h=36d,
2Ch =44d, 34h=52d, and 3Ch=60d. In cach case there is a signal line
coming into the CPU that can be used to cause the CPU to interrupt its
normal activity and immediately branch to one of these entry points. The
routines pointed to by these entry points are the key to understanding how
the corresponding devices work.

Routine: TRAP

Purpose: To handle low-power condition
Entry Point: 24h =36d

Input: None

Output: Shuts off the power.
BASIC Example:

Call 3B

Special Comments: To restore the power, turn the power switch (on
right side of machine) off and then on again.

The RST 5.5 entry point is at location 2Ch =44d. It is activated by the
bar code reader. Here, interrupts are disabled with the DI instruction. Then
there is a jump to location F5F9h =62,969d, where the bar code reader
interrupt service routine resides.

Routine: RST 5.5

Purpose: To receive data from bar code reader
Entry Point: 2Ch =44d

Input: From the bar code reader

Output: 'To the Model 100

BASIC Example: Not directly applicable

Special Comments: Not implemented in the machine as it comes
from the factory.

]

Figure 3-3. RAM routine table

48 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the ROM 49

The RST 6.5 entry point is at location 34h = 52d. It is activated by input
from the serial communications line. Here, interrupts are disabled with the
DI instruction. Then there 1s a jump to 6DACh = 28,076d, where the inter-
rupt service routine for accepting input from the serial communications
line resides.

Routine: RST 6.5

Purpose: To input byte from serial communications line

Entry Point: 34h =52d

Input: A byte from the serial communications line must be ready.
Output: To the serial communications input buffer

BASIC Example: Not applicable

Special Comments: None

The RST 7.5 entry point is at location 3Ch=60d. It is activated by a
pulse from the clock every 4 milliseconds. At this entry point, interrupts are
disabled with the DI instruction. Then there 1s a jump to 1B32h=6,962d,
where the background task begins. We will discuss the background task in
more detail in the next few chapters.

Routine: RST 7.5

Purpose: To initiate one cycle of the background task
Entry Point: 3Ch = 60d

Input: None

Output: Affects LCD display, real-time clock, and keyboard (see
Chapters 4, 5, and 6).

BASIC Example: Not applicable

Special Comments: See chapters 4, 5, and 6 for a full discussion of
the background task.

50 Hidden Powers of the TRS-80 Model 100

The BASIC Interpreter

‘The BASIC interpreter provides a friendly programming environment
for the Model 100. BASIC is a popular language because it is powerful, has
simple and direct syntax rules, and can immediately run programs or direct
commands as they are entered or modified, In this section you will see
exactly how all this works. We will also show you a simple program that
makes BASIC even more powerful and friendly.

BASIC extends from about 40h = 64d to about 50F0h = 20,720d in the
Model 100’ ROM. However, many of the routines in this area are shared by
other programs and BASIC uses some routines located in other areas.

BASIC Symbol and Address Tables

The address and symbol tables used by BASIC start at location 40h = 64d,
right after the interrupt entry points. These tables are described briefly
below. Refer to the appendices for their complete contents.

The first table (locations 40h=64d through 7TFh=127d) is a list of
addresses of routines to handle various BASIC functions such as INT,
ABS, SIN, and PEEK (see Appendix A). This table is used by the
BASIC interpreter to help it find these routines.

The second table (locations 80h = 128d through 25Fh = 607d) contains
all the BASIC keywords (see Appendix B). This table is used by the
BASIC interpreter to convert its keywords into special one-byte codes
called tokens. The tokens range in numerical value from 128 to 255,
The first keyword in this table is assigned to the token value 128, the
second 1s assigned to 129, and so on through the rest of the table.

The third table (locations 262h =610d through 2E1h=737d) contains
the addresses of the routines to handle BASIC commands. These are
given by the BASIC wmutial keywords — that is, keywords that appear at
the beginning of a BASIC command line, such as FOR, LET, GOTQ,
and CLEAR (see¢ Appendix C).

The fourth table (locations 2E2h =738d through 2EDh =749d) con-
tains operator priorities for the binary operations: +, —, * and so on
(see Appendix D). These priorities allow BASIC to recognize which
operations to do first in a complex algebraic expression. For example, in
the expression A + B * C, the * operation should be performed first
and the + second.

The fifth table (locations 2EEh = 750d through 2F7h = 759d) contains
addresses of some numerical conversion routines (see Appendix E).

Hidden Powers of the ROM

51

These convert numbers to double-precision, integer, and single-preci-
sion formats.

The sixth table (locations 2F8h = 760d through 303h =771d} contains
the addresses of the routines for binary operations of +, —, *,/, and
comparison for double-precision floating-point numbers (see Appendix
F).

The seventh table (locations 304h =772d through 30Fh=783d) con-
tains the addresses of the routines for binary operations of +, —, *,/,
and comparison for single-precision floating-point numbers (see Ap-
pendix G).

The eighth table (locations 310h=784d through 31Bh=795d) con-
tains the addresses of the routines for binary operations of +, —, *,/,
and comparison for integers (see Appendix H).

The ninth table (locations 31Ch = 796d through 369h =857d) contains
a list of all the two-character error designators (see Appendix I).

Area Mapped to High .Memory

The contents of the next area of ROM (locations 35Ah = 858d through
3EOh = 1001d) are moved to RAM (locations FAFOh =62,960d through
F67Fh =63,103d) when the Model 100 is first initialized. This area contains
various variables and routines, including those that help control the key-
board, LCD screen, and BASIC itself. Their initial values are stored in
ROM. When this area is mapped to RAM, these initial values are put in
place.

Among the routines in this area are ones that are called at the beginning
of certain interrupt service routines. When this area is moved to RAM,
these routines consist of just a RETurn instruction followed by two NO
oPeration instructions. However, because they are placed in RAM, they can
be changed to JuMPs to your own interrupt routines.

Other routines in this area implement the INP and OUT commands
(sec boxes) and key steps of the line-drawing algorithm used in the LINE
command (sec Chapter 4).

52 Hidden Powers of the TRS-80 Model 100

Routine: INP — BASIC Command
Purpose: To input from port
Entry Point: F66Ah = 63,082d

Input: The address of the desired port must be in location
F66Bh =63,083d.

Output: The routine returns with the data from the port in the A
register.

BASIC Example: Not directly applicable

Special Comments: When you use the INP function, BASIC auto-
matically puts the port address in location F66Bh =63,083d.

Routine;: OUT — BASIC Command
Purpose: 'Io output to a port
Entry Point: F667h =63,079d

Input: Upon entry, the A register contains the data to be output,
and location F668h =63,080d contains the port address.

Output: The contents of the A register are sent out the port.
BASIC Example:

FOKE 278:FPORT
Catl 977 :DATA

where PORT is the port address and DATA is the value of the data
byte.

Special Comments: None

Hidden Powers of the ROM 53

Messages and Errors

The next area of ROM (locations 3EAh = 1002d through 400h=1024d)
contains messages used by BASIC. These include “Error”, #?”, “Ok”, and
“Break”.

A set of routines that handles various errors runs from about
422h =1058d to 501h=1281d.

The main entry point for handling errors is at location 45Dh=1117d
(see box). Upon entry, the E register must contain an error code. When this
routine is called, it displays the corresponding error message and aborts
execution of a BASIC program. The error codes are given on page 217 of
the Model 100 owner’s manual and in Appendix I.

Routine: Main BASIC Error Routine

Purpose: 1o display an error message

Entry Point: 45Dh=1117d

Input: Upon input, the E register contains the error code.

Output: The routine displays the error message corresponding to
the error code in the E register. See the error code table on page 217
of the owner’s manual and Appendix I of this book.

BASIC Example: Not directly applicable

Special Comments: None

At location 511h = 1297d, the value FFFFh (minus one in 2’s comple-
ment arithmetic) is placed in the current BASIC line number
F67Ah =63,098d. This tells BASIC that it is in command entry or imme-
diate mode rather than running a program.

Next the INLIN routine at 4644h=17,988d is called (see box). This
routine waits for the next line {from the keyboard. If the line is nonempty,
the first level of interpretation, called tokenizing, takes place.

Routine: INLIN

Purpose: 1o input a line from the keyboard
Entry Point: 4644h = 17,9838d

Input: From the keyboard

Output: When the routine returns, the line is stored in memory
starting at location F68hh =63,109d, The line is terminated in
memory with a byte whose value is zero.

BASIC Example:

CaLL 17488

Special Comments: You can pick up the line by using the PEEK
statement.

There are special error entry points in which the E register is loaded
with a specific error code and then the main entry point processes the error.
These special entry points are located in two areas of the ROM. The first
area goes from 446h = 1094d to 45Ch=1116d, and the second area goes
from 504Eh = 20,558d to 506Ah = 20,586d (see Appendix J).

Command Entry

The main command entry loop for BASIC begins at location
501h = 1281d. We will discuss some of its highlights.

The code at location 50Bh=1291d displays the message “Ok” on the
screen. The message is stored at location 3F6h=1014d, as discussed pre-
viously. The routine that displays a message is located at 27B1h=10,161d.
It expects the address of the message in the HL register pair.

54 Hidden Powers of the TRS-B0 Model 100

During tokenizing, all the keywords in the BASIC command line are
converted to their one-byte tokens (see BASIC keyword table — Appendix
B). The command line is then in a very compact form, making it easier to
run and to store.

The tokenizing routine is located at 646h=1606d and is called from
54Ah = 1354d. The tokenizing routine has to be careful not to tokenize
REMarks and quoted material, and it has to translate lowercase characters
in variable names Lo uppercase.

Hidden Powers of the ROM 55

Routine: Tokenize

Purpose: To tokenize a BASIC command line

Entry Point: 646h = 1606d

Input: Upon entry, the HL register pair points to (contains the
address of) the untokenized line.

Output: When the routine returns, the tokenized line is stored in
memory starting at location F681h =63,105d. The tokenized line 1s
terminated by a byte whose value is zero.

BASIC Example:

AB=VARPTRE(A%)
Al=PEEK (AG+]11+E0G*¥PEEK (AD+2)
CAlLL 164G :0,Al

where A$ is a string containing the line to be tokenized, A0 is the
address of the string’s length and location parameters, and Al is the
address of the actual bytes of the string.

Special Comments: You can use PEEK to get the bytes of the token-
ized string from where they are stored in memory.

Routine: Search for Line Number

Purpose: To search a BASIC program for a line with a specified line
number

Entry Point: 628h=1576d

Input: Upon entry, the DE register pair has the line number in
binary.

Qutput: When the routine returns, the HL register pair contains
the address of the proper location to insert a line with the specified
line number into the program. If the specified line number matches
an existing line number in the program, the carry flag is clear;
otherwise it 1s set.

BASIC Example: Not directly applicabie

Special Comments: None

The routine works by matching character strings in the command line
against character strings in the token table at 80h = 128d (see Appendix B).
When it is looking for a match, it sweeps through the table, counting all the
mismatches until it finds a match. This count then is used to compute the
value of the token.

After tokenizing the line, the BASIC interpreter tries to insert the newly
created line into the program. It must first check whether the new line is an
immediate command. This is done with the RST 2 instruction, which 1s
invoked at 52%h = 1315d, and the conditional jump at 552h = 1362d. If the
line contains an immediate command, the command is executed immedi-
ately by jumping to location 4F1Ch =20,252d.

If the line is to be inserted into the program, then the code from
555h=1365d to 5ECh = 1516d is used to place it in the program. 1f a line
with the same line number already exists in the program, the new line
replaces the old; otherwise, it is simply inserted in the program. The routine
to search for the line number in the program is located at 628h=1576d
(see box).

56 Hidden Powers of the TRS-80 Mode! 100

Running BASIC Programs

The next major area of memory contains the code that runs BASIC
programs. This is the heart of the BASIC interpreter. This section extends
from about 804h =2052d to 871h=2161d.

This code has to check several conditions as it keeps running your
program. The first thing it checks is the communications line, by calling a
routine located at 6D6Dh = 28,013d (see Chapter 7). Then it checks for an
interrupt from the real-time clock by calling a routine at 4028h =16,424d
(see Chapter 5). Next it checks for a break from the keyboard by calling a
routine at 13F3h=5107d (see Chapter 6).

The BASIC interpreter then looks for a colon indicating the next state-
ment of a multiple statement on a BASIC command line. Finally, it checks
for the end of the program. It returns to the command loop via a jump to
428h =1064d if the program has indeed ended.

If the program has not ended, interpretation continues. The current
line number is stored in location F67Ah = 63,098d, and then the interpreter
dispatches to the routine to handle the keyword for the BASIC command
currently under consideration. It points to the address table for BASIC
commands. It is interesting to note that the last part of the dispatching
routine (locations 858h = 2136d through 87 1h =2161d) uses the same code
as is used by the RST 2 routine to check for numbers and skip over spaces.

Hidden Powers of the ROM 57

‘BASIC Keyword Routines

The next area of ROM contains routines to handle the various BASIC
keywords. This area extends from about 872h=2162d to about
50F0h =20,720d. It also includes some 1solated sections of code before and
after this. For example, the code for the FOR statement extends from
720h=1830d to about 803h =2051d, which is between the tokenizer rou-
tine and the command dispatcher.

The LET Statement

Among the most fundamental parts of the code for the Model 100 is the
code for handling the LET command (see box). Each LET command state-
ment consists of a variable name or identifier tollowed by an equal sign,
followed by a BASIC expression. Executing the LET command involves
locating variables and mterpreting BASIC expressions. In a sense it is the
key to understanding how BASIC works in the Model 1(04).

Routine: LET — BASIC Command

Purpose: To evaluate BASIC expressions and store the results in the
indicated BASIC variables

Entry Point: 9C3h = 2499d

Input: Upon entry, the HL register pair points to (contains the
address of) the rest of the BASIC LET command line (starting with
the variable identifier on the left of the “=").

Output: When the routine returns, the value of the BASIC expres-

sion is stored in the indicated variable {on the left side of the “="in
the LET command line).

BASIC Example:

Sl 24989 ,8,63188

where the input buffer at F681h=63,105d contains a tokenized
BASIC LET command line starting with the name of the variable
on the left side of the “=". Call the tokenizer routine at 646h = 1606d
before using this example.

Special Comments: The input butfer at 63,105 is also used by the
INPUT statement.

58 Hidden Powers of the TRS-80 Model 100

Lo
ti¢
128
138
14¢
15@
158
174
18a
1g9@
zae
218
22
23¢
249
250
6@
274
Zae
Z8a
3a6
4J1@
ERER'

The code for the LET routine extends from 9C3h =2499d to
A2Eh =2606d.

We have included a BASIC program that calls this LET routine. It also
calls the tokenizer routine at 646h = 1606d. This program turns your Model
100 into a fancy calculator. It can also be modified to turn the Model 100
into an interactive function grapher.

When you run this program, you are asked for the formula of the
function. You should enter it as a BASIC formula F(X) in the single variable
X. Next you are asked to give a starting value, an ending value, and a step
size for X. Once you have entered these, the program displays the values of
X and F(X) for the range and step size that you selected.

fOINTERACTIVE FUNCTION EVALUATOR

z

CLEAR 184

FRINT "INPUT A BABIC FORMULA"S
PRINT " IN XY

INPUT "F{X)="1B%

A= "Y="+DE+CHRE(B)

ITWNPUT "STARTING UALUE OF X" iX
INPUT "ENDING YALUE OF R L
INPUT ®BTEP SIZE OF ¥ e

© TGRENIZE THE FORRMULA
A = UARPFTR{AS)
Bl = PEER{(ADP+1Y+ZS5E#PEEK(AG+D)
CALL 1E8E:2:41]

© DISPLAY LOOP
FOR % = %@ TO X1 STEP X2
CALL 24939,@:B3103
PRINT XY
NEXT X

Let’s look at the program more closely. On lines 140-170, the formulas
input into the string B$ and packed into the string A$. The string A¥
includes a prefix of “Y =" to supply the variable to the left of the =" as
well as the “=". There is also a zero character packed into the end of A§ 1o
terminate the string for the ROM routines that we will call.

On lines 190-210, the starting step, ending step, and step sizc are mput
as variables X0, X1, and X2. Lines 230-250 compute the address where the
actual bytes of the command string are stored in memory. 'The tokenizer
routine at 646h = 1606d is called in line 260. Here, HI. points to the com-
mand string for our custom LET statement. The display loop for the values

Hidden Powers of the ROM 5%

of X and F(X) runs from lines 280-320, It consists of a2 FOR loop indexed
by the variable X with starting step, ending step, and step size determined
by X0, X1, X2. Inside the FOR loop, the LET routine at 9C3h = 2499 is
called to evaluate the formula Y = F(X), and then the values of X and Y are
printed on the LCD screen.

10 modily this program into an interactive function grapher, replace the
PRINT command in the FOR loop by a line plotting command. Of course,
you will have to add more controls to keep the screen looking good for the
display.

Now let’s return to our general discussion of the LET command and see
how 1t 1s implemented in ROM.

The LET statement is the only BASIC command that doesn’t require a
keyword, aithough it also accepts lines that begin with the token for the
keyword LET. As part of the command interpreter, BASIC must be able to
detect commands that don’t begin with a token. This function occurs at
840h =2112d, just before dispatch to the individual routines for keywords.
Here 80h = 128d is subtracted {rom the initial character on the line. 1f the
result is negative, the character is not a token, and a Jump is made to the
code for LET.

Let’s now look at the code for LET in more detail. It first calls a routine
at 4790h = 18,320d, which returns the address of the variable on the left
side of the equals sign (see box). Then it checks for the equals sign, aborting
the program and declaring a syntax error if the equals sign is not present.
It next calls a routine at DABh =3499d to evaluate the right-hand side of
the equals sign. Finally, it moves the computed value into the location
rescrved for the variable on the left of the equals sign.

Routine: Address Finder for BASIC Variables
Purpose: 1o locate the address of a BASIC variable
Entry Point: 4790h = 18,320d

Input: Upon entry, the HL register pair points to (contains the
address of) the name of a variable.

Output: When the routine returns, the DE register pair points to
the location of the variable in BASIC’s table of variables. Informa-
tion such as its data type and value is stored here.

BASIC Example: Not directly applicable

Special Comments: None

60 Hidden Powers of the TRS-80 Model 100

The address finder routine at 4790h = 18,320d expects the address of
the name of the variable in the HL register pair, and it returns the address
of the variable in the DE register pair.

The address finder routine is used by the VARPTR function as well as
the LET command. VARPTR is a BASIC function that returns the address
of a variable whose name is specified or a file whose number is specified.
The code for the VARPTR function starts at F7Eh=3966d. The part of
the code that deals with the address of a variable begins at F92h = 3986d. It
calls a routine at 482Ch=18,476d that directly calls the address finder

routine.

Routine: VARPTR — BASIC Function
Purpose: 'To return the location of a variable or a file
Entry Point: F7Eh = 3966d

Input: Upon input, the HL register pair points to (contains the
address of) the name of a BASIC variable or a BASIC file number.

Output: When the routine returns, the address of the variable or
the file buffer is in the DE register pair.

BASIC Example:

A = UARPTR{X)
where X is 2 BASIC variable and A is the BASIC variable where the
address of X will be stored.

Special Comments: Cannot be called from BASIC because the re-
sult 1s returned 1 DE.

The address finder routine at 4790h=18,320d first checks the first
character in the name of the variable. If this is not between A and Z, then it
aborts, declaring a syntax error; otherwise it puts the first cb;}racter of the
name in the C register. Next it picks up the second charact?r, if present, and
puts it into the B register. If there is no second character in the name, zero
is placed in the B register. .

Next, the routine skips through the rest of the name. After reaching the
end of the name, it tries to determine the fype of the variable — that is,
whether it is an integer, single-precision real, double-precision real, or string
variable.

Hidden Powers of the ROM 61

There are two ways that the type can be determined. One is by means
of special symbols such as %, $, !, and #. The other is by declaration through
the DEFINT, DEFSNG, or DEFDBL statements. This last method specifies
declared default data types according to the first character of the name. If
one of the special symbols (%, §, !, or #) is not found, the address finder
routine looks in a table at FB79h = 64,377d for the declared type (see Figure
3-4). No matter which way the type is determined, it is stored in location
FB65h=64,357d.

The routine then checks for the telltale parentheses of a variable that is
an array eniry. If the parentheses are present, it has to compute the position
of the entry within the array. We won’t describe this process, but it begins at
488Dh = 18,573d.

Next, the address finder routine searches for the name of the variable
among the existing variables. Only the first two characters of the name are
used. As we mentioned above, the C register contains the first character,

olw|lojoio|lwiofo|o|olcio|mjo]|o|ofoc|o|e|o|mjoicio|o]om
oo | @il |om|co|o | m|miem || ool oo |k irairit |

Figure 3-4. Declared default types

and the B register contains the second character, if it is present. The code
for this search runs from 480Th = 18,433d to 4828h = 18,472d.

BASIC maintains its variables in a table whose address is stored at
FBB2h =64,434d (see Figure 3-b). It the address finder routine cannot find
the variable in this table, it makes a place for the variable in the table. The
code for doing this runs from 4835h = 18,485d to about 4875h = 18,549d.

The different types of variables require difterent amounts of storage in
this table, Integer variables require 5 bytes, string variables require 6 bytes,
single-precision real numbers require 7 bytes, and double-precision real
numbers require 11 bytes. In each case, the first byte of its entry in the table
contains a code for the type: 2 for integers, 3 for string variables, 4 for

Figure 3-5. BASIC variable table

Hidden Powers of the ROM 63
62 Hidden Powers of the TRS-80 Model 100

single-precision real numbers, and 8 for double-precision real numbers.
You can see that the code for the type is 3 less than the number of bytes
required in the table. For each of these types, the second and third bytes
contain the ASCII code for the hirst character and second character in the
name of the variable. If the name consists of only one character, a value of
zero is used for the second character.

Now let’s examine in detail how each type is stored (see Figure 3-6).

For an integer variable, the fourth and [ifth bytes of its entry in the table
contain the value of the integer in 16-bit two’s complernent binary form.

For string variables, the fourth byte contains the length of the string,
and the fifth and sixth bytes contain the address of the location where the
string is stored in memory.

lor single- and double-precision real variables, the fourth through the
last bytes contain the value of the number in a floating-point format. Float-
ing point is like scientific format in that there is a sign, an exponent, and a

Figure 3-6. Storage allocation for BASIC variable

64 Hidden Powers of the TRS-80 Model 100

mantissa. We will describe how each of these is stored in the Model 100’
Hoating-point format.

The sign of the number is stored in bit 7 of the first byte. A bit value of
zero indicates a nonnegative number, and a bit value of 1 indicates a nega-
tive number.

The exponent of the number is stored in bits 0 through 6 of the hrst
byte, with a bias of 64. This means that the actual exponent is obtained by
subtracting 64 from the value stored in these bits.

The mantissa is stored in BCD form. That is, each decimal digit is
represented by a nibble (four bits). For single precision there are six BCD
digits in the three remaining bytes, and for double precision there are
fourteen BCD digits in the remaining seven bytes. In either case, the deci-
mal point is to the left of the most significant BCD digit.

Let’s look at a couple of examples: the numbers 1.7 and -1.7. For num-
ber 1.7, the sign bit is 0, the actual exponent is 1, and the mantissa has the
BCD digits 1 and 7 followed by zeros. This gives the expansion shown in
Figure 3-7 for the four bytes allotted to the number.

For — 1.7, the only difference 1s that the sign bit is 1. The other bits are
the same.

Now let’s look at the routine to evaluate the right side of the equals sign.
This expression evaluator routine is located at DABh =3499d (see box).

Routine: BASIC Expression Evaluator
Purpose: To evaluate BASIC expressions
Entry Point: DABh = 3499d

Input: Upon entry, the HL register pair points to (contains the
address of) a tokenized BASIC expression.

Output: When the program returns, the value of the expression is
contained in BASIC’s accumulator (locations FC18h =64,536d to
FC1Fh=064,543d).

BASIC Example: Not directly applicable

Special Comments: None

The expression evaluator routine attacks an expression by assuming
that the expression can be written as two expressions connected by a binary
operation such as +, —,*,/, ", or comparison. It assumes that the value of
the expression on the left has already been determined. It loops around and

Hidden Powers of the ROM 65

around, trying to process a new binary expression cach time. The first time
through the loop, it calls a routine at F1Ch=3868d to get the initial value
on the left (see box).

Routine: BASIC Function Finder
Purpose: 1o evaluate unary expressions
Entry Point: F1Ch = 3868d

Input: Upon entry, the HL register pair points to (contains the
address of) a term or function call of an expression in a tokenized
BASIC command line.

Output: When the routine returns, the value of the term or function
is in BASIC’s accumulator (locations FC18h =64,536d through
FCI1Fh=064,543d).

BASIC Example: Not directly applicable

Special Comments: None

The expression evaluator uses the systern stack to facilitate its operation.
Each time through the loop it compares the priority of the current binary
operation with the priority of the previous binary operation. If the old
operation has higher priority, it is actually performed and then stored in an
area of memory that acts as an accumulator; otherwise, all the information
to be performed is pushed onto the stack. For some expressions, the priori-
ties are such that many operations remain on the stack, but eventually all
operations are performed.

A section of code running from DE6h = 3558d to E28h = 3624d pushes
the needed information onto the system stack. This information includes
the value and type of the expression on the left, the code for the operation,
and a code for its priority. The priorities.of these operations are contained

100 0001|{ 00010111 | 00000000 | 000G 0000

Figure 3-7. Floating point representation for 1.7

66 Hidden Powers of the TRS-80 Model 100

in a table located at 2E2h = 738d. The routine also pushes two addresses of
its own code onto the stack.

The locations FC18h =64,536d through FC1Fh=64,643d are used as
an accumulator for the expression evaluator. For integers, just
FC1Ah=64,5638d and FC1Bh=64,5%39d are used; for single preasion,
locations FC18h =64,536d through FCIBh=64,559d are used; and for
double precision, all eight locations are used (see Figure 3-8).

Let’s look at a fairly simple example. This example will ilustrate how
the stack and the accumulator are used and how special starting and ending
conditions are handled.

Suppose we wish to evaluate the expression:

24+ 3%5 + 4
You should look at Figure 3-9 during the following explanation. The left-
most expression is 2. Its value is put in the accumulator. The first binary
operation is +. The first binary operation is always pushed. First the value
in the accumulator, and then the operation, are pushed onto the stack. The
next value, 3, is then evaluated in the accumulator. The next operation is *.
It has a higher priority than +, so the value 3 from the accumulator and
the * operation are also pushed onto the stack. Next, the value 5 is processed
in the accumulator. The next operation is +, which has a lower priority
than the previous operation (*), so evaluation of the * is begun. The com-
putation 3 * 5 is performed and the result lett in the accumulator. At this
point the stack contains the 2 and the +, and 15 is in the accumulator. The
next operation is +, which has the same priority as the + on the stack.
Thus the operation on the stack is performed, yielding 17 in the accumula-
tor. Since no more operations are pending, the value 17 and then the +
operation are pushed onto the stack. Finally, the 4 is processed into the
accumulator. Since the + is the last operation, it is processed, yielding a
result of 21 in the accumulator,

Figure 3-8. BASIC's accumulator

Hidden Powers of the ROM 67

Figure 3-9. Evaluating an expression

68 Hidden Powers of the TRS-80 Model 100

The binary operations are performed starting at location EGCh = 3692d.
The code for the operation (+, —, *, and so on) is stored at location
FB66h = 64,358d. The types are checked for the lett and right sides. If they
are not in agrecinent, various numerical conversion routines are called to
make sure that the types do match. The tables in low ROM described earlier
arc used to dispatch to the appropriate operation.

Now let’s look at the routine at F1Ch=3868d, which evaluates single
expressions. It uses the RST 2 call to skip spaces and look for numerical
values. If it finds a numerical value, it jumps to 3840h = 14,400d, where the
number is converted to the appropriate internal format. It next checks for a
variable by calling the routine at 40F2h=16,626d, which checks whether
the next character is in the range from A to Z. 1f it is, the routine jumps to
focation FDAh =4058d, where it calls the routine at 4790h=18,320d to
search for the variable among the existing variables. 1t gets the value of this
variable and returns. The routine at F1Ch = 3868d continues, checking for
such conditions as quotes, minus, NOT, and other unary operations and
functions. It also looks for parentheses. It jumps to the appropriate code to
handle whatever condition it finds.

Following this loop as it goes from F1Ch=3868d through F46h=3910d,
to ¥51h=23921d through F55h=3925d, to F60h=3936d through
F7Dh = 39654, to FA3h =4003d through FCBh =4043d, will allow you to
sce how the BASIC intepreter tries to detect all the possible “unary”
operations.

The TELCOM Program

The TELCOM program allows you to use the Model 100 as a smart
terminal for another computer either through an RS-232C communications
line or through a telephone connection. You can even use it to upload and
download text files.

The code for the TELCOM program runs from 5146h=20,806d to
about 5796h=22,492d (see box). The main command input loop runs
from 5152h = 20,818d to 5177h = 20,855d. The commands are input through
the routine at location 4644h =17,988d, which is called at location
516Ah = 20,842d. Dispatching is done via a routine at 6CATh=27815d,
which is called at 5175h=20,853d. A table showing the names and ad-
dresses of the TELCOM commands starts at 5185h =20,869d (see Table
3-1).

Hidden Powers of the ROM

69

Routine: TELCOM

Purpose: To handle telecommunications
Entry Point: 5146h =20,806d

Inpui: None

Output: Enters the TELCOM program
BASIC Example:

Routine: TERM — a TELCOM mode

Purpose: To establish terminal mode for telecommunications
Entry Point: 5455h =21,589d

Input: None

Output: Enters terminal mode of the TELCOM program,
BASIC Example:

Call ZeBan CAtL 21588

Special Comments: T'he routine does not return to BASIC. Special Comments: The routine does not return to BASIC.

One of the TELCOM commands is TERM, which puts you into termi-
nal mode (see box). Here is the BASIC command that will take you directly
from BASIC to TERM:

The TERM mode has several commands. A “dispatcher” routine lo-
cated at 54FCh = 21,756d (see Table 3-1) and a table starting at
550Dh=21,773d are used to branch to the routines for each of these
commands.

In Chapter 7 we will study the serial communications devices and the
ROM routines that run them.

LALL 21384

This is useful if you have just saved a BASIC file to another computer over
the RS-232C communications line, using the SAVE "COM:.., command in
BASIC, and want to reestablish two-way communications with the other
computer,

The MENU Program

The MENU program allows you to see what files you have in your Model
100 and select a particular one for editing or execution. It displays the main
menu, which shows a directory of the files. The names of the files are
displayed in six rows with four files to a row, giving a total of twenty-four
possible files. You can select a particular file either by typing its name or by
placing the cursor over the name in the directory and pressing ENTER.

The code for the MENU program extends from 5797h = 22,4234 to
about 5B67h=23%,399d. It consists of an initialization section, a main com-
mand loop, and a number of routines to handle the various cursor and
dispatching commands. The command loop gets keystrokes from the user
and interprets themn as cursor and selection commands.

Table 3-1. TELCOM commands

70 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the ROM 71

Routine: MENU

Purpose: 'Io display the menu directory and select program or file
Entry Point: 5797h =22,423d

Input: None

Output: The directory is displayed on the screen.
BASIC Example:

CALL 22423

Special Comments: This CALL will cause you to exit BASIC and
return to the main menu.

The File Directory

The directory is displayed on the LOD screen as part of the initialization
stage of the MENU program. There are a total of twenty-seven possible
entries in the RAM directory. However, there are only twenty-four spots for
entries in the LCD menu display. The other three entries are false entries:
two secretly store the names of those who helped develop the Model 100,

‘The directory is stored in RAM starting at FO962h = 63,8424 (see F igure
3-10). Each entry in the RAM directory takes up eleven bytes. The first byte
contains the file type and protection code (see Figure 3-11). The individual
bits are assigned as follows: bit 7 is 1 if the entry is currently being used and
O if it 1s mvalid, bit 6 1s 1 if it is an ASCII (DO file, bit his 1 il it is a
machine-language file (CO), bit 4 is [it it is a ROM file, and bit $ is 1 if it is
an invisible file. Thus, for example, the ROM programs BASIC, TEXT,
TELCOM, ADDRSS, and SCHEDL are stored as files of type BOh=176d
(valid, machine language, and ROM bits are all on). The second and third
bytes contain the address of the body of the file in the usual low/high format.
The next eight bytes contain the name of the file. For files created by the
Model 100’ various utilities, the first six bytes contain the main part of the
name and the last two bytes contain the file extension. If the main part of
the name is less than six characters, the remaining bytes between the main
part of the name and the file extension are filled with spaces.

Figure 3-10. The directory

Machine
language?

invisihle?

Figure 3-11. The bits of the file type byte

72 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the ROM 73

The following BASIC program displays the directory, giving file type
and address for each hle. It even shows the hidden files.

1 - DISPLAY DIRECTORY

1ie -

128 FOR 1 = g3g42 T B4138 BTEP 11
138 PRINT USINMG vasu’i PEERK{I)S
146 ADR = PEERII+II+ELE#PEER(I+E)
15¢ PRINT USDING "s#sssss"ipDRs" ¢
16e Fik k=3 70 19

178 FRINT CHRs{PEER(LI+R)]

184 NEXNT B

198 FRINT

e MEXT 1

The program is straightforward. It consists of a loop that goes through
all the directory entries, displaying the numbers and text as described above.

Now let’s look at the MENU program in ROM. It 1s located at
5797h =22,423d. It begins by setting up the screen tor display of the menu.
It turns off the reverse characters, cursor, and function key display, and it
unlocks the display. It displays the time and date and the Microsoft copy-
right notice.

The main loop for displaying directory entries begins at 57F8h =22,520d.
Just betore the loop, the DE register pair is loaded with the address of a
short table located at 5B1Eh=23,326d (See¢ Figure 3-12). This table con-
tains the following list of hle types: BOh=176d, FOh=240d, COh=192d,
80h=128d, and A0Oh = 160d. The table terminates with a zero. This routine
will display directory entries with only these file types, and it will display
them in this order. The first type (BOh=175d) corresponds to the ROM
program files such as BASIC, TEXT, and TELCOM. If you look at your
display, you will see that they are always listed first. The third type
(COh = 192d) corresponds to regular ASCII files (file extension DO), and
the fourth type (80h = 128d) corresponds to regular BASIC program files
(file extension BA). You will notice that all ASCII (DO) files are listed before
all BASIC (BA) files.

The main loop of the directory display gets a file type from the table,
places it in the C register, and calls a routine at 5970h =22,896d to display -
all directory entries of that file type. The loop continues until all the files of
these five displayable types are displayed on the LCD screen.

The routine at 5970h=22,896d loads the DE register pair with the
beginning address of the directory (F962h=63,842d) and the B register
with the value 27, which is the total number of directory entries. It then
goes into a loop that cycles through the entries, picking up the file type and

Figure 3-12. Displayed file types

74 Hidden Powers of the TRS-80 Model 100

Hidden Powers of the ROM 75

comparing it against the specified file type in the C register. If the types do
not match, it skips the entry. If they do, the filename is displayed at the
appropriate place on the screen. A routine at 59C9% =22,985d sets the
proper cursor position on the screen for the entry.

The main directory display routine concludes by filling in missing en-
tries with a “-.-” pattern and displaying “Select:” at the bottom of the screen.

The Command Loop

The main command loop extends from 585Ah=22,618d to
588Bh=22,667d. lts purpose 1s to get and interpret the user’s keystroke
commands for the MENU program.

The command loop starts with a conditional call to the BEEP routine
(see Chapter 8), which is executed if the command buffer has overflowed.
Next it calls a routine at 5D70h = 23,9204 to update the time and date on
the LCD screen (see box). Then it calls a routine at 5D64h = 23,908d to
wait for a character from the keyboard. It checks for various special ASCII
codes. An ASCII 13 {enter) causes it to jump to 58F7h =22,775d, an ASCII
8 (backspace) or 7Fh = 127d (delete) causes it to jump to H88Eh = 22,6704,
and an ASCII 15h=21d U causes it to jump to 5837h =22 ,583d. If
the ASCII code is not one of these but is less than 20h = 32d, the loop jumps
to 589Ch = 22,684d. If none of these occur, the character is printed as part
of the commmand line on the bottom of the display.

Let’s look at the cursor control commands in a bit more detail. The
positions for the entries on the screen are numbered from 0 to 23 in the
code that controls the cursor. The numbering systemn is simple: position 0 is
the upper left position of the menu, position 1 is the position just to the
right of position 0, and so on, left to right from top to bottom of the menu.

The current position 18 stored in FDEEh=24,046d, and the current
maximum position is stored at FDEFh =65,007d. The right arrow routine
increments the current position by 1, the left arrow routine decrements the
current position by 1, the down arrow routine adds 4 to the current position,
and the up arrow routine subtracts 4 from the current position. If the
current position exceeds the number of entries or becomes negative, it is
wrapped around. You can see how the cursor wraps or cycles around the
display as you repeatedly hit any one arrow key.

The routine to handle actually does the dispatching to the
selected menu entry. This routine is located at 58F7h=22,775d. The loca-
tion FDEDh = 65,005d is checked to see if the cursor position or the com-
mand line on the bottom of the screen should be used. If the cursor position
is used, the routine counts through a table of addresses that maps the
position numbers of the entries on the screen with the corresponding posi-

76 Hidden Powers of the TRS-80 Modei 100

tions in the directory in RAM. This table begins at FDATh =64,929. The
routine finds the directory entry in RAM and checks the file type.
For file type AOh=160d, it jumps to 254Bh=9547d; for file type BOh
(ROM command files), it jumps to 596Fh = 22,895d; for file type FOh = 240d,
it jumps to F624h =63,012d (a RAM location); and for file type COh = 192d
(ASCII files), it jumps to 5F65h =24,421d. If the file type is none of the
above, it Is treated as a BASIC file. After shoving the beginning address into
location F67Ch =63,100d and doing a couple of other things, the routine
jumps to the execution loop of the BASIC interpreter.

The ADDRSS and SCHEDL Programs

The ADDRSS and SCHEDL programs are utilities that allow you to use
your machine better. The ADDRSS program helps you to find addresses
and telephone numbers that you have stored in your Model 100's memory,
and the SCHEDL program helps you look up notes of things.

The code for the ADDRSS program extends from 5B68h = 23,400d to
about 5B6Eh = 23,4064d. The code tor the SCHEDL program extends from
5B6Fh =23,407d to about 5BA8h =23 ,464d. Both programs jump to
5B74h=23,412d.

Routine: ADDRSS

Purpose: To locate addresses and telephone numbers in the per-
sonal address directory file ADRS. DO

Entry Point: 5B68h=23,4(0d
Input: None

Output: Enters the ADDRS program
BASIC Example:

Catl 23499

Special Comments: This CALL does not return to BASIC.

Hidden Powers of the ROM 77

The first part of the code for TEX'T sets up the screen and gets the file
to be edited. It calls a routine at 5A7Ch =23%,164d (o set the function key
display. It uses the table at 5E22h = 24,098d, which is empty. There are no
function keys available at this point of the TEX'T program. 1t then displays
a message asking you to enter the file. 1t calls a routine at 2206h = 8710d to
get the filename and locate the file and then jumps to 5F65h =24,421d 10
edit the file. If a new file needs to be created, the routine called MAKTXT
at 220Fh=8719d 1s called. Location 5F65h=24,421d is the same entry
point dispatched to by the MENU program for ASCII files,

Routine: SCHEDL

Purpose: 1o locate schedule items in the personal notes file NOTE. DO
Entry Point: 5B6Fh =23,407d

Inpui: None

Output: Enters the SCHEDL program

BASIC Example:

CAali 23487

Special Comments: This CALL does not return to BASIC,

Routine: MAKTXT .
Purpose: To create a text file
Entry Point: 220Fh =8719d

Input: Upon entry, the filename must be stored in memory, starting
at location FC93h=64,659d. The .DO part of the file name need
not be included.

The ADDRSS and SCHEDL programs behave very much like, and

share much code with, the TEXT program described below. For this reason,
we will not investigate these programs any further,

The TEXT Program

The TEXT program is the editor or word processor for the Model 100.
The code for this program extends from 5DEEh = 24,046d to about
G6BFOL =27,632d. It consists of an Initialization section, a main character
input loop, and a set of routines to implement the various cursor control
and editing commands.

Output: Enters the TEXT program
BASIC Example:

CALL B718

Special Comments: None

The code at 5F65h = 24,42 1d sets up the screen for normal editing and
loads the function keys with the options “Find”, “Load”, “Save”, “Copy”, and
S0 on.

The main edit loop extends from 5¥DDh =24,541d to 6(15h =24 ,597d.
The loop looks like a subroutine with a RET instruction at the end. However,
at the top of the loop, the address of the top of the loop is pushed onto the
stack. Thus the RET returns to the top each time.

At SFEDh =24,557d, the edit loop calls a routine at 63E5h =25,573d
to get the next key (see box). For control characters, it uses a table at
6015h=24,597d to dispatch to routines to perform the various editing
functions. Tor regular characters, it jumps to 608Ah=24,714d, where it
enters the character into the text.

* Routine: TEXT

Purpose: o edit text files

Entry Point: 5DEEh = 24 046d
Input: None

Output: Enters the TEXT program
BASIC Example:

CRLL Z48de

Special Comments: This CALL does not return to BASIC.

8 Hidden P f the TRS-80 Model 100
7 idden Powers of the odel Hidden Powers of the ROM 79

Routine: INITIO — Warm Start

Purpose: 1o warm start the 1/O of the Model 100
Entry Point: 6CEGh =27 872d

Input: None

Output: Initializes the I/0 devices of the Model 100.
BASIC Example:

Routine: Get Key

Purpose: 1o wait for a key for TEXT program

Entry Point: 63E5h =25,573d

Input: From the keyboard

Output: Upon return, the ASCII code of the key is in the A register.
BASIC Example: Not applicable

Special Comments: Only called from TEXT CALL 278727

Special Comments: None

The Initialization Routines

The initialization routines help set up or configure the various 1/0 The Primitive Device Routines

devices in the Model 100 to start the computer after it gets stuck and will
not respond to you through the keyboard.

The code for warm and cold /O initialization runs {rom about
6CDEh =27,862d to 6D3Eh=27,966d (see boxes). The last part of the
ROM, starting at 7D33h = 32,051d, contains code to start up the computer.

The code for the primitive-level routines for handling devices runs from
about 6D3Fh =27,967d to 7D32h = 32,050d and includes tables. In subse-
quent chapters we will study many of these routines in detail.

Summary

Routine: INITIO — Cold Start

Purpose: To cold start the I/O of the Model 100
Entry Point: 6CD6h = 27,862d

Input: None

Output: The Model 100 I/O is reset — cold start.
BASIC Example:

In this chapter we have surveyed the Model 1(0’s ROM from beginning
to end. We have concentrated on the areas that manage the BASIC inter-
preter and the MENU program, for these are the keys to understanding
many other secrets of the Model 100’ operation.

A particular area of interest is the code for the LET command, in which
the BASIC interpreter finds variables and evaluates expressions. We have
shown how you can gain direct control of this code to make an interactive
function evaluator.

CaLl 27862
Special Comments: Watch out, this is a cold restart! It clears the
area from FF40h=65,344d to FFFDh=65,033%d. This area con-

tains the keyboard buffer, among other things. It continues into the
warm start reset after clearing that area.

80 Hidden Powers of the TRS-80 Model 100 Hidden Powers of the ROM 81

